Quantifying Uncertainty

Sai Ravela

M. I. T

Last Updated: Spring 2013

Particle Filters

- Applied to Sequential filtering problems
- Can also be applied to smoothing problems
- Solution via Recursive Bayesian Estimation
- Approximate Solution
- Can work with non-Gaussian distributions/non-linear dynamics
- Applicable to many other problems e.g. Spatial Inference

Notation

 x_t , X_k : Models states in continuous and discrete space-time respectively.

 x_t^T : True system state

 y_t, Y_k : Continous and Discrete measurements, respectively.

 X_k^n : n^{th} sample of discrete vector at step k.

M: model, *P*: probability mass function.

Q: Proposal Distribution, δ : kronecker or dirac delta function.

We follow Arulampalam et al.'s paper.

Non-Gaussianity

Sequential Filtering

Recall: Ensemble Kalman filter & Smoother

We are interested in studying the evolution of $y_t \in f(x_t^T)$, observed system, using a model with state x_t .

4

This means (in discrete time, discretized space):

Can be solved recursively

$$P(X_k|Y_{1:k}) = \frac{P(X_k, Y_{1:k})}{P(Y_{1:k})}$$

Sequential Filtering via Recursive Bayesian Estimation

 $Y_{1:k}$ is a collection of variables $Y_1 \dots Y_k$ So:

$$P(X_k|Y_{1:k}) = \frac{P(X_k, Y_{1:k})}{P(Y_{1:k})}$$

$$= \frac{P(Y_k|X_k)P(X_k|Y_k)P(Y_{1:k-1})}{P(Y_k|Y_{1:k-1})P(Y_{1:k-1})}$$

$$= \frac{P(Y_k|X_k)P(X_k|Y_{1:k-1})}{P(Y_k|Y_{1:k-1})}$$

Contd.

$$P(X_k|Y_{1:k}) = \underbrace{\frac{P(Y_k|X_k)}{2} \underbrace{\sum_{X_{k-1}} P(X_k|X_{k-1}) P(X_{k-1}|Y_{1:k-1})}_{X_k}}_{X_{k-1}} \underbrace{\frac{P(Y_k|X_k)}{1} P(X_k|X_{k-1}) P(X_{k-1}|Y_{k-1})}_{3}}$$

- 1. From the Chapman-Kolmogorov equation
- 2. The measurement model/observation equation
- Normalization Constant

When can this recursive master equation be solved?

Let's say

$$X_k = F_k X_{k-1} + V_k$$

$$Z_k = H_k X_k + \eta_k$$

$$V_k = N(\cdot, P_{k|k})$$

$$\eta_k = N(0, R)$$

Linear Gaussian→ Kalman Filter

For non linear problems

Extended Kalman Filter, via linearization Ensemble Kalman filter

- No linearization
- Gaussian assumption
- Ensemble members are "particles" that moved around in state space
- They represent the moments of uncertainty

How may we relax the Gaussian assumption?

If $P(X_k|X_{k-1})$ and $P(Y_k|X_k)$ are non-gaussian;

How do we represent them, let alone perform these integrations in (2) & (3)?

Particle Representation

Generically

$$P(X) = \sum_{i=1}^{N} w^{i} \delta(X - X^{i})$$

pmf/pdf defined as a weighted sum

- → Recall from Sampling lecture
- → Response Surface Modeling lecture

Contd.

Even so,

Whilst P(X) can be evaluated sampling from it may be difficult.

Importance Sampling

Suppose we wish to evaluate

$$\int_{x} f(x)P(x)dx \quad \text{(e.g. moment calculation)}$$

$$\int_{x} f(x)\frac{P(x)}{Q(x)}Q(x)dx, \qquad X^{i} \sim Q(x)$$

$$= \frac{1}{N}\sum_{i=1}^{N} f(x=X^{i})w^{i}, \qquad w^{i} = \frac{P(x=X^{i})}{Q(x=X^{i})}$$

So:

Sample from $Q \equiv \text{Proposal distribution}$ Evaluate from $P \equiv \text{the density}$ Apply importance weight $= w^i = \frac{P(X^i)}{Q(X^i)}$ Now let's consider

$$P(x) = \frac{\hat{P}(x)}{\int \hat{P}(x)dx} = \frac{\hat{P}(x)}{Z_p}$$
$$Q(x) = \frac{\hat{Q}(x)}{\int \hat{Q}(x)dx} = \frac{\hat{Q}(x)}{Z_q}$$

So:

$$\frac{1}{N}\frac{Z_q}{Z_p}\sum_{i=1}^N f(x=X^i)\widehat{w}^i$$

where

$$\widehat{W}^i = \frac{\widehat{P}(x = X^i)}{\widehat{Q}(x = X^i)}$$
 These are un-normalized "mere potentials"

It turns out:

$$\frac{NZ_p}{Z_q} = \sum_i \hat{w}^i$$

$$\therefore f(x)P(x)dx \cong \frac{\sum_{i=1}^N f(x = X^i)\hat{w}^i}{\sum_j^N \hat{w}^j}$$

$$\frac{\sum_{i} f(X^{i}) \hat{w}^{i}}{\sum_{j} \hat{w}^{j}} \quad \text{ is just a "weighted sum"}$$

Where a proposal distribution was used to get around sampling difficulties and the importance weights manage all the normalization.

 \Rightarrow It is important to select a good proposal distribution. Not one that focus on a small part of the state space and perhaps better than an uninformative prior.

Application of Importance Sampling to Bayesian Recursive Estimation Particle Filter

$$P(X) \cong \frac{\sum_{i} \hat{w}^{i} \delta(X - X^{i})}{\sum_{j} \hat{w}^{j}} = \sum_{i} w^{i} \delta(X - X^{i})$$

 w^i is normalized.

Let's consider again:

$$X_k = f(X_{k-1}) + V_k$$
$$Y_k = h(X_k) + \eta_k$$

A relationship between the observation and the state (measurement)

⇒ Additive noise, but can be generalized

Let's consider the joint distribution

We may factor this distribution using particles

Chain Rule with Weights

$$P(X_{0:k}|Y_{1:k}) = \sum_{i=1}^{N} w^{i} \delta(X_{0:k} - X_{0:k}^{i})$$
$$w^{i} \equiv \frac{P(X_{0:k}^{i}|Y_{1:k})}{Q(X_{0:k}^{i}|Y_{1:k})}$$

And let's factor $P(X_{0:k}|Y_{1:k})$ as

$$\begin{split} P(X_{0:k}|Y_{1:k}) &= \frac{P(Y_k|X_{0:k},Y_{1:k-1})P(X_{0:k}|Y_{1:k-1})}{P(Y_k|Y_{1:k-1})} \\ &= \frac{P(Y_k|X_k)P(X_k|X_{k-1})P(X_{k-1}|Y_{1:k-1})}{P(Y_k|Y_{1:k})} \end{split}$$

Proposal Distribution Properties

Suppose we pick

$$Q(X_{0:k}|Y_{1:k}) = Q(X_k|X_{0:k-1}, Y_{1:k})Q(X_{0:k-1}|Y_{1:k-1})$$

i.e. there is some kind of recursion on the proposal distribution. Further, if we approximate

$$Q(X_k|X_{0:k-1}, Y_{1:k}) = Q(X_k|X_{k-1}, Y_k)$$

i.e. there is a Markov property.

Recursive Weight Updates

Then we may have found an update equation for the weights.

$$\begin{split} \frac{P(X_{0:k}|Y_{1:k})}{Q(X_{0:k}|Y_{1:k})} &= \frac{P(Y_k|X_k)P(X_k|X_{k-1})P(X_{0:k-1},Y_{1:k-1})}{P(Y_k|Y_{1:k-1})Q(X_k|X_{k-1},Y_k)Q(X_{0:k-1}|Y_{1:k-1})} \\ w_k^i &= \frac{P(Y_k|X_k^i)P(X_k^i|X_{k-1}^i)}{Q(X_k^i|X_{k-1}^i,Y_k)P(Y_k|Y_{1:k-1})} \frac{P(X_{0:k-1}^i,Y_{1:k-1})}{Q(X_{0:k-1}^i,Y_{1:k-1})} \\ &= \frac{P(Y_k|X_k^i)P(X_k^i|X_{k-1}^i)}{Q(X_k^i|X_{k-1}^i,Y_k)P(Y_k|Y_{1:k-1})} w_{k-1}^i \\ &\propto \frac{P(Y_k|X_k^i)P(X_k^i|X_{k-1}^i)}{Q(X_k^i|X_{k-1}^i,Y_k)} w_{k-1}^i \end{split}$$

The Particle Filter

In the filtering problem

$$P(X_k|Y_{1:k})$$
 $w_k^i \propto w_{k-1}^i rac{P(Y_k|X_k^i)P(X_k^i|X_{k-1}^i)}{Q(X_k^i|X_{k-1}^i, Y_k)}$
 $(So) \ P(X_k|Y_{1:k}) \cong \sum_{i=1}^N w_k^i \delta(X_k - X_k^i)$

Where the $x_k^i \sim Q(X_k|X_{k-1}^i, Y_k)$

The method essentially draws particles from a proposal distribution and recursively update its weights.

- ⇒ No gaussian assumption
- → Neat

Algorithm Sequential Importance Sampling

Input:
$$\{X_{k-1}^{i}, w_{k-1}^{i}\}$$
, Y_{k} $i = 1 ... N$ for: $i = 1 ... N$

Draw: $X_{k}^{i} \sim Q(X_{k}|X_{k-1}^{i}, Y_{k})$

$$w_{k}^{i} \propto w_{k-1}^{i} \frac{P(Y_{k}|X_{k}^{i})P(X_{k}^{i}|X_{k-1}^{i})}{Q(X_{k}^{i}|X_{k-1}^{i}, Y_{k})}$$

end

BUT The Problem

In a few intervals one particle will have a non negligible weight; all but one will have negligible weights!

$$\widehat{N}_{eff} = rac{1}{\sum_{i=1}^{N} (w_k^i)^2}$$

Contd.

```
\widehat{\textit{N}}_{\textit{eff}} \equiv Effective Sample size When \widehat{\textit{N}}_{\textit{eff}} << \textit{N} 
ightarrow Degenaracy sets in
```

Resampling is a way to address this problem

Main idea

You can sample uniformly and set weights to obtain a representation. You can sample pdf to get particles and reset their weights.

Resampling algorithm

Algorithm

```
Input \{X_k^i, w_k^i\}
1. Construct cdf
```

- for i = 2 : N $C_i \leftarrow C_{i-1} + w_k^i(sorted)$
- 2. Seed $u_1 \sim U[0, N^{-1}]$
- 3. for j = 1: N $u_j = u_1 + \frac{1}{N}(j-1)$ $i \leftarrow find(C_i \ge u_j)$ $\hat{X}_k^j = X_k^j \quad w_k^j = \frac{1}{N}$ Set Parent of $j^j \rightarrow j$

Contd.

So the resampling method can avoid degeneracy because it produces more samples for higher probability points

But Sample impoverishment may result; Too many samples too close → impoverishment or loss of diversity

⇒ MCMC may be a way out

Generic Particle filter

$$\begin{split} & \text{Input: } \{X_{k-1}^{i}, w_{k-1}^{i}\}, Y_{k} \\ & \text{for } i = 1: N \\ & X_{k}^{i} \sim Q(X_{k}|X_{k-1}^{i}, Y_{k}) \\ & w_{k}^{i} \leftarrow w_{k-1}^{i} \frac{P(Y_{k}|X_{k}^{i})P(X_{k}^{i}|X_{k-1}^{i})}{Q(X_{k}^{i}|X_{k-1}^{i}, Y_{k})} \\ & \text{end} \\ & \eta = \sum_{i} w_{k}^{i} \\ & w_{k}^{i} \leftarrow w_{k}^{i}/\eta \\ & \widehat{N}_{\text{eff}} = \frac{1}{\sum_{i=1}^{N}(w_{k}^{i})^{2}} \\ & \text{If } \widehat{N}_{\text{eff}} < N_{T} \\ & \{X_{k}, w_{k}^{i}\} \leftarrow \text{Resample } \{X_{k}^{i}, w_{k}^{i}\} \end{split}$$

What is the optimal Q function? we try to minimize $\sum_{i=1}^{N} (w_k^{*i})^2$ Then:

$$Q^{*}(X_{k}|X_{k-1}^{i}, Y_{k}) = P(X_{k}|X_{k-1}^{i}, Y_{k})$$

$$= \frac{P(Y_{k}|X_{k}, X_{k-1}^{i})P(X_{k}|X_{k-1}^{i})}{P(Y_{k}|X_{k-1}^{i})}$$

$$w_{k}^{i} \propto w_{k-1}^{i} \frac{P(Y_{k}|X_{k}^{i})P(X_{k}^{i}|X_{k-1}^{i})}{P(Y_{k}|X_{k}^{i})P(X_{k}|X_{k-1}^{i})}P(Y_{k}|X_{k-1}^{i})$$

$$\propto w_{k-1}^{i} \underbrace{\int_{X_{k}} P(Y_{k}|X_{k})P(X_{k}|X_{k-1}^{i})dX_{k}}_{\text{Not easy to do!}}$$

Asymptotically:

$$\widehat{Q} \sim P(X_k|X_{k-1}^i) \leftarrow \text{Common choice } Q \equiv P(X_k|X_{k-1}^i)$$

Sometimes feasible to use proposal from process noise

Then

$$w_K^i \propto w_{k-1}^i P(Y_k|X_k^i)$$

If resampling is done at every step:

$$w_k^i \propto p(Y_k|X_k^i)$$

 $(w_{k-1}^i \propto \frac{1}{N})$

SIR -Sampling Importance Resampling

Input
$$\{X_{k-1}^{i}, w_{k-1}^{i}\}, Y_{k}$$

for $i = 1: N$
 $X_{k}^{i} \sim P(X_{k}|X_{k-1}^{i})$
 $w_{k}^{i} = P(Y_{k}|X_{k}^{i})$
end
 w_{k}^{i}

 $\begin{array}{l} \eta = \sum_i w_k^i \\ w_k^i = w_k^i/\eta \\ \{x_k^i, w_k^i\} \leftarrow \text{Resample} \left[\{X_k^i, w_k^i\} \right] \end{array}$

Example

$$X_k = rac{X_{k-1}}{2} + rac{25X_{k-1}}{1+X_{k-1}^2} + 8\cos(1.2k) + v_{k-1}$$
 $Y_k = rac{X_k^2}{w} + \eta_k$
 $\eta_k \sim N(0, R)$
 $v_{k-1} \sim N(0, Q_{k-1})$

MIT OpenCourseWare http://ocw.mit.edu

12.S990 Quantifying Uncertainty

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.