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Particle Filters

Applied to Sequential filtering problems

Can also be applied to smoothing problems

Solution via Recursive Bayesian Estimation

Approximate Solution

Can work with non-Gaussian distributions/non-linear dynamics
Applicable to many other problems e.g. Spatial Inference
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Particle Filters

Notation
Xt, Xk : Models states in continuous and discrete space-time
respectively.
x{ : True system state
¥t, Yi: Gontinous and Discrete measurements, respectively.
X[ : n'" sample of discrete vector at step k.
M: model, P: probability mass function.
Q: Proposal Distribution, § : kronecker or dirac delta function.
We follow Arulampalam et al.s paper.

Non-Gaussianity
Sampling

SIS Kernel

SIR RPF
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Sequential Filtering

Recall: Ensemble Kalman filter & Smoother

Y1 Y2
«——— QObservations

X0 X1 X2
O OO «——— Model States

We are interested in studying the evolution of y; € f(x/), observed
system, using a model with state x;.
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Particle Filters

This means (in discrete time, discretized space):

P(Xk|Y1:x)

L]

step
Can be solved recursively
P( Xk, Y.
P(Xl Vi) = (P(m) )
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Sequential Filtering via Recursive Bayesian Estimation

Yi.x is a collection of variables Y; ... Yk
So:

P(X| Yi.4) = W

P(Yi| X)) P(Xk| Yi ) P(Yar—
P(Y|Y1:k-1)P

k—1

_ POV X)) P(Xi| Yi:k-1)
P(Yk|Y1:k-1)
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Contd.

P(YilXk) D P(Xil Xi—1) P(Xe—1| Y1:6-1)
N——

2 Xi—1

P(Xk| Y1) = 1
D> P(Yil Xi) P(Xic| Xi—1) P(Xi—1| Yi—1)
Xk Xk—1

1. From the Chapman-Kolmogorov equation
2. The measurement model/observation equation
3. Normalization Constant

When can this recursive master equation be solved?
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Particle Filters

Let’s say

Xk = FrXk—1 + Vi

Z = Hi Xk +
Vi = N(-, Prik)
Nk = N(O7 R)

Linear Gaussian— Kalman Filter
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For non linear problems

Extended Kalman Filter, via linearization

Ensemble Kalman filter

» No linearization

» Gaussian assumption

» Ensemble members are “particles” that moved around in state
space

» They represent the moments of uncertainty
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Particle Filters

How may we relax the Gaussian assumption?
If P(Xk|Xk—-1) and P(Yx|Xx) are non-gaussian;

How do we represent them, let alone perform these integrations in (2)
& (3)?
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Particle Representation

Generically

pmf/pdf defined as a weighted sum
— Recall from Sampling lecture
— Response Surface Modeling lecture
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Contd.

Even so,
Whilst P(X) can be evaluated sampling from it may be difficult.
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Importance Sampling

Suppose we wish to evaluate

/f(x)P(x)dx (e.g. moment calculation)

/f(x)PX

N
_ oyl i
g (x=X" W_O(x:X’)

) Q(x)dx, X'~ Q(x)
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Particle Filters

So:

Sample from Q =Proposal distribution
Evaluate from P = the density

Apply importance weight = w' = CP,E);;
Now let’s consider
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Particle Filters

So: N
12, o
i=1
where
w = M These are un-normalized “mere potentials”
x =X

It turns out:

Nzp A

pARDY

Quantifying Uncertainty



Particle Filters

> F(XD)W
X W
Where a proposal distribution was used to get around sampling
difficulties and the importance weights manage all the normalization.

is just a “weighted sum”

=1t is important to select a good proposal distribution. Not one that
focus on a small part of the state space and perhaps better than an
uninformative prior.
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Particle Filters

Application of Importance Sampling to Bayesian Recursive Estimation
Particle Filter

S, WiS(X — XI)

P(X) = > de (X — X"

w' is normalized.
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Particle Filters

Let’s consider again:

X = f(Xk_1) + Vi
Yie = h(Xx) + nk

A relationship between the observation and the state (measurement)

= Additive noise, but can be generalized
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Particle Filters

Let’s consider the joint distribution

P(Xo:x|Y1:k)
Ys Yk
Xo X1 ******** — Xk
IC

We may factor this distribution using particles
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Chain Rule with Weights

N
P(Xox| Yik) = Y w'o(Xok — X)
i=

_ PGl Y1)
— Q(Xoxl Vi)
And let’s factor P(Xo.«| Y1) as

i —

P(Yi|Xo.k, Y1:k—1) P(Xok| Y1:k—1)
P(Yk|Y1:k-1)

— POYk| Xk) P( Xk | Xk—1) P(Xk—1] Y1:k—1)

B P(Yk| Y1)

P(XO:k| Y‘I:k) =
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Proposal Distribution Properties

Suppose we pick
O(XO:k‘ \/1:/() - Q(Xk|X0;k_1, Y1:k)O(X0:k—1 | Y1:k—1)

i.e. there is some kind of recursion on the proposal distribution.
Further, if we approximate

Q(Xk| Xo:k—1, Y1:k) = Q(Xk| Xk—1, Y«)

i.e. there is a Markov property.
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Recursive Weight Updates

Then we may have found an update equation for the weights.

P(Xox|Yik)  P(YklXk) P(Xk| Xk—1)P(Xok—1, Y1:k—1)

Q(Xo:k| Y1) P(Yk|Y1:k—1)Q(Xk| Xk—1, Yk) Q(Xo:k—1] Y1:k—1)

PYKIX)PXlXi 1) P Yik-1)
QXX Yi) P(Yi Yrk—1) QX ey, Yik—1)

wi =

 PORXDPO ),
Q(XMX/’(_M Yk)P(Yk|Y1:k71) k=1

POGIXDPOAIXE )
QXX Vi),
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The Particle Filter

In the filtering problem
P(Xk| Y1.k)

P(Yil X P(Xk| Xi_+)
QXX+, Vi)

Wy o< Wj_q

N
(S0) P(Xk| Yik) =Y wiid(Xe — Xi)
i=1
Where the x| ~ Q(Xk|X]_,, Y«)
The method essentially draws particles from a proposal distribution
and recursively update its weights.

= No gaussian assumption
= Neat
23
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Particle Filters

Algorithm Sequential Importance Sampling

Input: {X}_;, w4}, Yk i=1...N
forri=1...N
Draw: X/( ~ Q(Xk|XI£71, Yk)

o POYRIXDPOXGIX )
) ! k A k1M k—1
Wi & W1 —a(x(1X]_,.v)

end
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Particle Filters

BUT The Problem

o N
| ‘ ¢

T

Xk

In a few intervals one particle will have a non negligible weight; all but
one will have negligible weights!

1
eff = N , s

S (w))?

)
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Contd.

~

Ner = Effective Sample size
When Ngy << N — Degenaracy sets in

Resampling is a way to address this problem

Main idea
weights
[~ .. (\/\ B You can sample uniformly
RN B and set weights to obtain a
representation. You can
Resample | sample pdf to get particles

" " ¢ s f
:i:] and reset their weights.

weights are reset
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Particle Filters

Resampling algorithm

Many points

Cdf(w)

] ] ] ] ] ] ]
T T T T T T T

w!' w’ w2 wb wd wd w?
Sample
Resampling —— more probable
states more
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Algorithm

Input {X}, wj}
1. Construct cdf '
fori=2:N C; <« Ci_1+ w,(sorted)
2. Seed uy ~ U[0, N7
3. forj=1:N
y=u+x5G-1)
i+ find(C; > Uj)
=X w4
Set Parent of // — i
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So the resampling method can avoid degeneracy because it
produces more samples for higher probability points

But Sample impoverishment may result; Too many samples
too close — impoverishment or loss of diversity

= MCMC may be a way out
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Particle Filters

Generic Particle filter

Input: {X]_,,w] 1}, Y«
for i=1:N .
X~ QUGIXy i)
P(Yil Xi) P(Xi 1 Xk 1)

i i
Wi < Wi —apx X, o)
end
n=>_; W
W < Wi /1 1
Neff =———
N -
> (wy)?
If Neff < Nt

{ Xk, w)} < Resample {X}, w.}
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What is the optimal Q function?
we try to minimize ", (w;')?
Then:
Q" (Xl Xi—1, Yie) = P(Xk| X1, Vi)

_ PO X, X1 )P(Xicl X _+)
P(YilXi_1)

O P(Yk|XD)P(XiLXE .
) ( k‘ k) (/&MP(Y}(|X/(71)

i
e M POV TP (X XE )

s / P(YilXi) P(Xk X)X
Xk

Not easy to do!
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Particle Filters

Asymptotically:
Q ~ P(Xk|X._,) + Common choice Q = P(Xx|X._,)

Sometimes feasible to use proposal from process noise
Then

Wi oc Wi P(Yk| Xg)

If resampling is done at every step:

wy, o< p( Ykl Xi)

(Wy_ 1N)
32
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Particle Filters

SIR -Sampling Importance Resampling
Input {X}_,,wi_,}, Yk
fori=1:N
X,’(" ~ P(Xk|X,£'_1)
wi = P(Yk|X)

end
n=7> W;i
Wi = Wi /n

{xt, w} < Resample [{X], w.}]
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Example

Xe—1  25Xk_1
X = 8cos(1.2k) 4 vix_
K 5 +1+X571+ ( ) + Vik—1
X2
Yk = Wk + Nk
Tk ~ N(Oa R)

Vk—1 ~ N(0, Qx—_1)
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