
12.009/18.352 Problem Set 5 
Due Thursday April 9, 2015 

Problem 1: 45 pts — (a,b,c,d)=(10,15,10,10)  
Problem 2: 55 pts — (a,b,c,d,e,f)=(10,5,10,10,10,10)  

1.	 Borehole Paleothermometry: One way we know about past climate variability is by 
drilling deep holes (boreholes) into bedrock or glaciers, and measuring the tempera­
ture at different depths. Surface temperature perturbations have diffused downwards 
below the surface, and we can solve for past surface temperatures by integrating the 
diffusion equation backwards in time, and solving for the surface boundary condition 
as a function of time. Here we will tackle a slightly easier example of how surface 
temperature variations can leave a direct temperature record below the ground or ice. 

(a) Assume that we have a large, homogeneous body of rock or glacial ice, infinite in 
horizontal extent, so that we can consider the time-dependent diffusion equation 
only in the vertical direction. Consider z to be the vertical coordinate, positive 
downwards. We will solve an equation for the temperature perturbation from the 
long-term mean, T '(z, t). Let the surface boundary condition be: 

T '(0, t) = Δ cos(ωt),	 (1) 

i.e., oscillation about zero with an angular frequency ω and an amplitude Δ. 
Assuming a thermal diffusivity D, show that 

	 T '(z, t) = Δ cos(ωt − kz)e −kz (2) 

represents a solution to the diffusion equation, if an appropriate value of k is used. 
What is the appropriate value of k? 

(b) Discuss the form of the solution given by eqn. (2). You might find it helpful to 
� 

make some plots in MATLAB. (Hint: how  do the depths of locations with T ' = 0 
vary in time?) 

(c) Using a value of ω appropriate for the annual cycle, a temperature amplitude Δ 
of 20◦C, and a thermal  diffusivity of 10−6 m2/s, how deep must you go to get to 
the point where the amplitude of the seasonal cycle has decayed to 1◦C? What 
is the temperature anomaly at that depth when it is summer at the surface, and 
the temperature is maximum there? 

(d) How deep does a borehole have to be to observe a full cycle of a hypothesized 
mode of oscillatory climate variability with timescale τ? Discuss some practical 
limits of the application of this method of climate measurement. 

2.	 Precession of the Major Axis: Without any perturbations from the outside, a planet 
orbiting in an elliptical orbit will remain in the same orbit forever. It turns out, 
however, that the stability of these fixed ellipses is tied very closely to the 1/r potential 
in which the planets sit. In this problem, we will explore what happens if we add a 
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small perturbing force, 
1 

f ∼ ,
4  (3) 
r

to our system. This higher order term comes about both from interactions with other 
planets and through relativistic considerations – here we will quote the relativistic 
results alone for the strength of the perturbing force, since perturbations from other 
planets are complicated to calculate, and introduce forces that scale with other powers 
of r (e.g. f ∼ r,f ∼ 1/r3) – it is not immediately clear what terms dominate on long 
time scales. We will start with a conversion of our orbital equation from one in terms 
of the potential, to one in terms of the force. Based on the equation for the orbital 
energy derived in class, it can be shown that an expression can be written in terms of 
the force field, F (r): 

d2 1 1 µr2
+ = F (r). (4)

dθ2

  
 −   

r r l2 

Showing this is a little involved, so we’re not asking that you do it, but eqn. (4) will 
be the basis for what follows. 

(a) By enforcing the gravitational potential and including the following definitions: 

1 Gm2
1m2 1 ≡ , u
2  = (5)

α l r 

show that equation (4) reduces to 

d2u 1 
+

2  u = . (6)
dθ α 

(b) Show that the conic section solution for the gravitational potential, 

1 
u = (1 + f cos (θ)) , (7)

α 

is a solution to equation (6). 
(c) At this point, we are ready to explore the consequences of including a small term 

which depends on r−4 to F (r). This allows us to alter equation (6) to get 

d2u 1 
+  u

2
 = + δu2 (8)

dθ  α 

where δ is a very small constant. Specifically, δ must be small relative to the or­
bital  radius; relativity predicts δ = 3Gm2/c

2 ≈ 4400 m, which is indeed miniscule 
compared to Earth’s orbital radius of 1.5 × 1011 m. Because the u2δ term is so 
small it can be solved through a series of successive guesses where we start by 
guessing the solution of equation (6) and plug it into equation (8). By this we 
mean that we guess that u ≈ u0 + u1, where u1 << u0, and then determine u0 as 
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the solution to the unperturbed equation: 

d2u0 1 
+ u0 =	 (9)

dθ2 α 

The perturbation  u1 is solved for by using u2 ≈  u2
0 and then solving for the LHS 

that matches δu2
0: 

d2u1 
+ u1 =2  δu2

0. (10)
dθ

Since δ is very small, we expect the correction u1 to be very small, and thus terms 
like u0u1 in the square of u are further small corrections to the solution, which we 
will not consider. For this problem, use u0 given by (7), and show that:  	  δ f2 f2

u1 = 1 +
2

 + fθ sin θ − cos 2θ	 (11)
α 2 6 

 

is a solution consistent with (10). 
(d) Show, remembering the small angle approximation, that our solution for u0 + u1 

can be simplified to 
	

1	 δ δ f2 f2 
u ∼= 

 
1 + f cos

 
θ − θ

  
+ 

 
1 + − cos 2θ

α

 
. (12)

	 α α2 2 6 

(e) Explain how the −(δ/α)θ term contributes to the precession of the major axis of 
an elliptical orbit. You may find it helpful to make a few plots, using MATLAB, 
of r(θ) for varying values of δ, α and f. To start off with, try δ = π/40, α = 1 
and f = 0.5. You might find polar a useful MATLAB function. 

(f) Estimate the timescale over which the effects of nonzero	 δ could be noticed for 
the Earth. Do you think we can measure this predicted effect of relativity for any 
of the planets in the solar system? 

3  



MIT OpenCourseWare
http://ocw.mit.edu

12.009J / 18.352J Theoretical Environmental Analysis
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

