Spectral Theorem Example

1.022 Recitation Notes, Paolo Bertolotti
These notes solve for the eigenvalues and eigenvectors of a matrix, discuss their properties briefly, and

end with the spectral theorem. Please refer to the Linear Algebra Reference notes for detailed
definitions.

Consider the following 2x2 matrix A. A is symmetric, meaning it equals its transpose.
nii= A= {{2, -1}, {-1, 3}};

MatrixForm[A]

Out[2)//MatrixForm=
(55
-1 3
ng)= MatrixForm[Transpose[A]]
Out[3]//MatrixForm=
(55
-1 3
To solve for the eigenvalues of A, we first recall the equation that we used to define eigenvalues and
eigenvectors. An eigenvector x, with a corresponding eigenvalue A (which is a scalar), is a non-zero
vector such that
AX = AX
We use the 2x2 identity matrix |d and rewrite the eigenvalue/vector equation to get
(A-Ald)x=0.

ner= Id = {{1, 0}, {0, 1}};
MatrixForm[Id]
Out[10])//MatrixForm=

o 1)

MatrixForm[A - A % Id]

SEUPY

Since eigenvectors are non-zero, we are looking for a non-zero vector that is in the null-space of (A - A
Id). If (A - A 1d) has a non-zero vector in its null-space, it is not invertible (it is singular), and its determi-
nant is 0. Therefore, we solve for the values of A that set determinant(A-Ald) =0.

For the generic 2x2 matrix F below, its determinant is given by
det( F)=ad - bc.

In[23]:= F = {{a, b}l {cl d}};
MatrixForm[F]

Out[24]//MatrixForm=
[ al
c d
Therefore the determinant of (A - A ld) is:
ines)= Simplify[(2-2A) (3-2A) - (-1) (-1)]

outzsl= 5 -5 A + 22
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Setting this equation equal to 0, we arrive at the characteristic polynomial of A. Solving this equation
provides the eigenvalues of A.

nz6)- NSolve[5-52+2% =0, A]

oueel= {{A - 1.38197}, {1~ 3.61803}}
Since we started with a symmetric matrix, the eigenvalues are real. Note that we have a square, symmet:
ric matrix with non-negative eigenvalues. Therefore, A is positive semi-definite (it is actually positive
definite as the eigenvalues are strictly positive). For positive semi-definite matrices, X’Ax = 0 for any

vector x. Let's expand out the quadratic form x’Ax and plot it to show that the function is always non-
negative, for any value of x =[xz, X2].

3= Expand [Transpose[{{x1}, {x2}}]1.A.{{x1}, {x2}}]

out3l= {{2 X3 -2 %1 Xy + 3x§}}

ne- Plot3D[2 x} -2 %1 %2 +3 %3, {x1, -4, 4}, {x2, -4, 4}]

Out[4]= 50
_A%XL - 0
24
Now we turn to solving for the eigenvectors. For each eigenvalue A;, we need to solve the system of
linear equations (A - 2; Id) x = 0 for x.
nel= A1 = 1.381966011250105" ;

A2

3.618033988749895";

nf1]= MatrixForm[ (A - A1 % Id)]
Out[11]//MatrixForm=
0.618034 -1.
-1. 1.61803
For the first eigenvalue, solving the 2x2 system (A - 1; Id) x = 0 for x below, we see that x is not
unigue. Any vector pointing in the same direction as the vector below will be an eigenvector of A for A4,
regardless of its length. Since we care about the direction of the vector, not its length, we impose the
additional restriction of unit length (I, norm = 1).

in1g]= NSolve[ (A - Ay * Id).{{x1}, {x2}} =0, {x1, x2}]
ouftgl= {{x1 >0. +1.61803 x2}}

In[19]:= Solve['\/ (0. +1.618033988749895" X2)2 +x%2% =1, %3]
outo- {{X2 » -0.525731}, {x2 > 0.525731}}

ne3= X1 =0." +1.618033988749895" (0.5257311121191336‘)
outzsl= 0.850651

We have our first eigenvector x = [0.850651, 0.525731]. We follow the same steps to solve for the
second eigenvector and find y = [-0.525731, 0.850651].
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niesi- NSolve[ (A -2z *Xd) . {{yv1}, {y2}}E=0, {y1, y2}10
ouzsl- {{y1 > 0.-0.618034y,}}0

In[26]:= Solve['\/ (0.~ -0.6180339887498948" y;)? +f2% =1, y2|
ourel- {{y2 > -0.850651}, {y2 - 0.850651}}0

ne7= y1 =00.° —0.6180339887498948‘(0.85065080835204“)
oute7l=: —0.525731

Now, since we started with a symmetric matrix, we know the eigenvectors will be orthogonal.

neer- x =0{{0.85065080835204"}, {0.5257311121191336"}};
y =[{{-0.5257311121191336~}, {0.85065080835204"}};
Transpose[x] .y

outso= {{0.3}1}0

Putting the eigenvectors into the matrix X with columns x and y, we have an orthogonal matrix. For
orthogonal matrices, we know their transpose equals their inverse.

X =[{{0.85065080835204", -0.5257311121191336"},
{0.5257311121191336, 0.85065080835204"}};

MatrixForm[X][

Out[33]//MatrixForm=
0.850651 -0.525731
0.525731 0.850651

np4- Transpose[X][0== Inverse[X][

outi34)= True

Combining all the eigenvalue/vector equations, we have AX = XA\ where X is our eigenvector matrix
(with the eigenvectors as columns) and A is a diagonal matrix with the eigenvalues on the diagonal.
Multiplying both the right and left sides of the equation on the right by X1, we get A = XAX™. As X is
orthogonal, we arrive at the spectral theorem
A = XAXT

nEsi= A =0{ {1, 0}, {0, X2}};
MatrixForm[A]l

Out[36]//MatrixForm=
(1.38197 0 )
0 3.61803

nizel= MatrixForm[X.A.Transpose[X]]1[

Out[38]//MatrixForm=

SV
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