

1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts Institute of Technology

Lecture 2

- ► Graph $G(V, E) \Rightarrow$ A set V of vertices or nodes
	- \Rightarrow Connected by a set E of edges or links
	- \Rightarrow Elements of E are unordered pairs (u,v) , $u,v \in V$

► In figure
$$
\Rightarrow
$$
 Vertices are $V = \{1, 2, 3, 4, 5, 6\}$
 \Rightarrow Edges $E = \{(1, 2), (1, 5), (2, 3), (3, 4), ...$
 $(3, 5), (3, 6), (4, 5), (4, 6)\}$

Simple and multi-graphs

- \blacktriangleright In general, graphs may have self-loops and multi-edges
	- \Rightarrow A graph with either is called a multi-graph

Mostly work with simple graphs, with no self-loops or multi-edges

- ► In directed graphs, elements of E are ordered pairs (u, v) , $u, v \in V$ \Rightarrow Means (u, v) distinct from (v, u)
- Directed graphs often called digraphs
	- \Rightarrow By convention (u, v) points to v
	- \Rightarrow If both $\{(u,v),(v,u)\} \subseteq E$, the edges are said to be mutual
- \triangleright Ex: who-calls-whom phone networks, Twitter follower networks

イロメ イ団メ イモメ イモメー

 \blacktriangleright Consider a given graph $G(V, E)$

- ▶ Def: Graph $G'(V', E')$ is an induced subgraph of G if $V' \subseteq V$ and $E' \subseteq E$ is the collection of edges in G among that subset of vertices
- Ex: Graph induced by $V' = \{1, 4, 5\}$

メロメ メ母メ メミメ メミメ

- \triangleright Oftentimes one labels edges with numerical values
	- \Rightarrow Such graphs are called weighted graphs
- **Typical network representations:**

 \triangleright Note that multi-edges are often encoded as edge weights (counts)

重

イロン イ団ン イミン イモンジ

Adjacency

- \blacktriangleright Useful to develop a language to discuss the connectivity of a graph
- \triangleright A simple and local notion is that of adjacency
	- \Rightarrow Vertices $u,v\in V$ are said adjacent if joined by an edge in E
	- \Rightarrow Edges $e_1,e_2\in E$ are adjacent if they share an endpoint in $\mathcal V$

▶ In figure \Rightarrow Vertices 1 and 5 are adjacent; 2 and 4 are not \Rightarrow Edge $(1,2)$ is adjacent to $(1,5)$, but not to $(4,6)$

イロン イ部ン イ君ン イ君ン

- An edge (u, v) is incident with the vertices u and v
- \blacktriangleright Def: The degree d_v of vertex v is its number of incident edges

- ▶ In figure \Rightarrow Vertex degrees shown in red, e.g., $d_1 = 2$ and $d_5 = 3$
- \blacktriangleright High-degree vertices likely influential, central, prominent.
- \blacktriangleright The neighborhood \mathcal{N}_i of a node i is the set of all its adjacent nodes $\Rightarrow \mathcal{N}_5=\{1,3,4\} \ \Rightarrow$ In general, $|\mathcal{N}_i|=d_i$

Properties and observations about degrees

- ▶ Degree values range from 0 to $|V|-1$
- \blacktriangleright The sum of the degree sequence is twice the size of the graph

$$
\sum_{v=1}^{|V|}d_v=2|E|
$$

 \Rightarrow The number of vertices with odd degree is even

In digraphs, we have vertex in-degree d_v^{in} and out-degree d_v^{out}

▶ In figure \Rightarrow Vertex in-degrees shown in red, out-degrees in blue \Rightarrow For example[,](#page-8-0) $d_1^{in}=0, d_1^{out}=2$ and $d_{5,-}^{in}=3, d_{5,-}=1$

Movement in a graph

A path of length *I* from v_0 to v_i is a consecutive sequence of distinct vertices

 $\{v_0, v_1, \ldots, v_{l-1}, v_l\}$, where v_i and v_{i+1} are adjacent

A Walk: vertices do not have to be distinct.

A closed walk $(v_0 = v_1)$ is called a circuit

 \Rightarrow A closed path is a cycle

 \blacktriangleright All these notions generalize naturally to directed graphs

イロメ イ団メ イモメ イモメー

- ► Length of a path \Rightarrow is the sum of the weights of traversed edges
- \blacktriangleright The distance between two nodes *i* and *j* is the length of the shortest path linking *i* and *j*

 \Rightarrow In the absence of such a path, the distance is ∞

- \Rightarrow The diameter of the graph is the value of the largest distance
- \blacktriangleright There exist efficient algorithms to compute distances in graphs \Rightarrow Dijkstra, Floyd-Warshall, Johnson, $...$

メロメ メ部メ メ君メ メ君メ

- \triangleright Vertex v is reachable from u if there exists a $u - v$ path
- ▶ Def: Graph is connected if every vertex is reachable from every other

 \blacktriangleright If bridge edges are removed, the graph becomes disconnected

Connected components

 \triangleright Def: A component is a maximally connected subgraph \Rightarrow Maximal means adding a vertex will ruin connectivity

▶ In figure \Rightarrow Components are $\{1, 2, 5, 7\}$, $\{3, 6\}$ and $\{4\}$ \Rightarrow Subgraph $\{3,4,6\}$ not connected, $\{1,2,5\}$ not maximal

Disconnected graphs have 2 or more components

 \Rightarrow Largest com[po](#page-11-0)[ne](#page-12-0)nt often called giant component

Giant connected components

- In Large real-world networks typically exhibit one giant component
- \blacktriangleright Ex: romantic relationships in a US high school [Bearman et al'04]

Bearman, Peter S., James Moody, and Katherine Stovel. "Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks." © Peter S. Bearman, James Moody, and Katherine Stovel. All rights reserved. This content is excluded from our Creative Commons license. For more information, see<https://ocw.mit.edu/help/faq-fair-use/>.

- \triangleright Q: Why do we expect to find a single giant component?
- \triangleright A: It only takes one edge to merge two giant c[om](#page-14-0)[p](#page-12-0)[o](#page-13-0)[ne](#page-14-0)nts

Connectivity of directed graphs

-
- \blacktriangleright Connectivity is more subtle with directed graphs. Two notions
- ▶ Digraph is strongly connected if for every pair $u, v \in V$, u is reachable from v (via a directed path) and vice versa
- \blacktriangleright Digraph is weakly connected if connected after disregarding edge directions, i.e., the underlying undirected graph is connected

Above graph is weakly connected but not strongly connected

 \Rightarrow Strong connectivity implies weak connectivity

イロメ イ母メ イヨメ イヨメ

A complete graph K_n of order n has all possible edges

- \blacktriangleright Q: How many edges does K_n have?
- ► A: Number of edges in $K_n =$ Number of vertex pairs $= \binom{n}{2} = \frac{n(n-1)}{2}$
- ▶ Of interest in network analysis are cliques, i.e., complete subgraphs \Rightarrow Extreme notions of cohesive subgroups, communities

イロン イ部ン イ君ン イ君ン

 \blacktriangleright A d-regular graph has vertices with equal degree d

▶ Naturally, the complete graph K_n is $(n-1)$ -regular

 \Rightarrow Cycles are 2-regular (sub) graphs

- Regular graphs arise frequently in e.g.,
	- \blacktriangleright Physics and chemistry in the study of crystal structures
	- \triangleright Geo-spatial settings as pixel adjacency models in image processing
	- \triangleright Opinion formation, information cycles as regular subgraphs

イロン イ団ン イモン イモン

Trees and directed acyclic graphs

 \triangleright A tree is a connected acyclic graph

 \Rightarrow A collection of trees is denominated a forest

 \blacktriangleright Ex: river network, information cascades in Twitter, citation network

 \triangleright A directed tree is a digraph whose underlying undirected graph is a tree \Rightarrow Rooted if paths from one vertex to all others

- ▶ Vertex terminology: parent, children, ancestor, descendant, leaf
- ▶ Underlying graph of a directed acyclic graph (DAG) need not be a tree

メロメ メ御き メミメメミド

MIT OpenCourseWare <https://ocw.mit.edu/>

1.022 Introduction to Network Models Fall 2018

For information about citing these materials or our Terms of Use, visit: [https://ocw.mit.edu/terms.](https://ocw.mit.edu/terms)