

1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts Institute of Technology

Lecture 2

イロン イロン イヨン イヨン

- Graph $G(V, E) \Rightarrow A$ set V of vertices or nodes
 - \Rightarrow Connected by a set *E* of edges or links
 - \Rightarrow Elements of *E* are unordered pairs (*u*, *v*), *u*, *v* \in *V*

► In figure
$$\Rightarrow$$
 Vertices are $V = \{1, 2, 3, 4, 5, 6\}$
 \Rightarrow Edges $E = \{(1, 2), (1, 5), (2, 3), (3, 4), ... (3, 5), (3, 6), (4, 5), (4, 6)\}$

《口》《聞》《臣》《臣》

Simple and multi-graphs

- ▶ In general, graphs may have self-loops and multi-edges
 - \Rightarrow A graph with either is called a multi-graph

Mostly work with simple graphs, with no self-loops or multi-edges

- In directed graphs, elements of E are ordered pairs (u, v), u, v ∈ V
 ⇒ Means (u, v) distinct from (v, u)
- Directed graphs often called digraphs
 - \Rightarrow By convention (u, v) points to v
 - \Rightarrow If both $\{(u, v), (v, u)\} \subseteq E$, the edges are said to be mutual
- ► Ex: who-calls-whom phone networks, Twitter follower networks

・ロト ・回ト ・ヨト ・ヨト

Subgraphs

• Consider a given graph G(V, E)

- ▶ Def: Graph G'(V', E') is an induced subgraph of G if V' ⊆ V and E' ⊆ E is the collection of edges in G among that subset of vertices
- Ex: Graph induced by $V' = \{1, 4, 5\}$

<ロト <部ト < 注ト < 注ト

- Oftentimes one labels edges with numerical values
 - \Rightarrow Such graphs are called weighted graphs
- Typical network representations:

Network	Graph representation
WWW	Directed multi-graph (with loops), unweighted
Facebook friendships	Undirected, unweighted
Citation network	Directed, unweighted, acyclic
Collaboration network	Undirected, unweighted
Mobile phone calls	Directed, weighted
Protein interaction	Undirected multi-graph (with loops), unweighted
:	:

Note that multi-edges are often encoded as edge weights (counts)

・ロト ・回ト ・ヨト ・ヨト

Adjacency

- Useful to develop a language to discuss the connectivity of a graph
- ► A simple and local notion is that of adjacency
 - \Rightarrow Vertices $u, v \in V$ are said adjacent if joined by an edge in E
 - \Rightarrow Edges $e_1, e_2 \in E$ are adjacent if they share an endpoint in V

▶ In figure \Rightarrow Vertices 1 and 5 are adjacent; 2 and 4 are not \Rightarrow Edge (1,2) is adjacent to (1,5), but not to (4,6)

<ロ> <同> <同> < 回> < 回>

- An edge (u, v) is incident with the vertices u and v
- **Def:** The degree d_v of vertex v is its number of incident edges

- ▶ In figure \Rightarrow Vertex degrees shown in red, e.g., $d_1 = 2$ and $d_5 = 3$
- High-degree vertices likely influential, central, prominent.
- ► The neighborhood N_i of a node *i* is the set of all its adjacent nodes $\Rightarrow N_5 = \{1, 3, 4\} \Rightarrow$ In general, $|N_i| = d_i$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Properties and observations about degrees

- Degree values range from 0 to |V| 1
- The sum of the degree sequence is twice the size of the graph

$$\sum_{\nu=1}^{|V|} d_{\nu} = 2|E|$$

 \Rightarrow The number of vertices with odd degree is even

▶ In digraphs, we have vertex in-degree d_v^{in} and out-degree d_v^{out}

► In figure \Rightarrow Vertex in-degrees shown in red, out-degrees in blue \Rightarrow For example, $d_1^{in} = 0, d_1^{out} = 2$ and $d_5^{in} = 3, d_5^{out} = 1$

Movement in a graph

A path of length / from v₀ to v₁ is a consecutive sequence of distinct vertices

 $\{v_0, v_1, \ldots, v_{l-1}, v_l\}$, where v_i and v_{i+1} are adjacent

A Walk: vertices do not have to be distinct.

• A closed walk $(v_0 = v_l)$ is called a circuit

 \Rightarrow A closed path is a cycle

All these notions generalize naturally to directed graphs

・ロト ・回ト ・ヨト ・ヨト

- Length of a path \Rightarrow is the sum of the weights of traversed edges
- ► The distance between two nodes *i* and *j* is the length of the shortest path linking *i* and *j*

 \Rightarrow In the absence of such a path, the distance is ∞

- \Rightarrow The diameter of the graph is the value of the largest distance
- ► There exist efficient algorithms to compute distances in graphs ⇒ Dijkstra, Floyd-Warshall, Johnson, ...

<ロ> <同> <同> < 同> < 同>

- Vertex v is reachable from u if there exists a u v path
- **Def:** Graph is connected if every vertex is reachable from every other

▶ If bridge edges are removed, the graph becomes disconnected

・ロン ・部 と ・ ヨ と ・ ヨ と …

Connected components

- Def: A component is a maximally connected subgraph
 - \Rightarrow Maximal means adding a vertex will ruin connectivity

- ▶ In figure \Rightarrow Components are $\{1, 2, 5, 7\}$, $\{3, 6\}$ and $\{4\}$ \Rightarrow Subgraph $\{3, 4, 6\}$ not connected, $\{1, 2, 5\}$ not maximal
- Disconnected graphs have 2 or more components
 - \Rightarrow Largest component often called giant component

イロト イポト イヨト イヨト

Giant connected components

- Large real-world networks typically exhibit one giant component
- ▶ Ex: romantic relationships in a US high school [Bearman et al'04]

Bearman, Peter S., James Moody, and Katherine Stovel. "Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks." © Peter S. Bearman, James Moody, and Katherine Stovel. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocv.mit.edu/hde/plaf_shir-use/.

- Q: Why do we expect to find a single giant component?
- ► A: It only takes one edge to merge two giant components

Connectivity of directed graphs

- Connectivity is more subtle with directed graphs. Two notions
- ▶ Digraph is strongly connected if for every pair u, v ∈ V, u is reachable from v (via a directed path) and vice versa
- Digraph is weakly connected if connected after disregarding edge directions, i.e., the underlying undirected graph is connected

Above graph is weakly connected but not strongly connected

 \Rightarrow Strong connectivity implies weak connectivity

< ロ > < 同 > < 回 > < 回 >

• A complete graph K_n of order *n* has all possible edges

- Q: How many edges does K_n have?
- A: Number of edges in K_n = Number of vertex pairs = $\binom{n}{2} = \frac{n(n-1)}{2}$
- Of interest in network analysis are cliques, i.e., complete subgraphs
 ⇒ Extreme notions of cohesive subgroups, communities

<ロ> <同> <同> < 回> < 回>

► A *d*-regular graph has vertices with equal degree *d*

• Naturally, the complete graph K_n is (n-1)-regular

 \Rightarrow Cycles are 2-regular (sub) graphs

- Regular graphs arise frequently in e.g.,
 - Physics and chemistry in the study of crystal structures
 - Geo-spatial settings as pixel adjacency models in image processing
 - Opinion formation, information cycles as regular subgraphs

<ロ> <同> <同> < 同> < 同> < 同> :

Trees and directed acyclic graphs

A tree is a connected acyclic graph

 \Rightarrow A collection of trees is denominated a forest

Ex: river network, information cascades in Twitter, citation network

► A directed tree is a digraph whose underlying undirected graph is a tree ⇒ Rooted if paths from one vertex to all others

- ▶ Vertex terminology: parent, children, ancestor, descendant, leaf
- Underlying graph of a directed acyclic graph (DAG) need not be a tree

<ロ> <同> <同> < 回> < 回>

1.022 Introduction to Network Models Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.