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THE VAN VLECK TRANSFORMATION IN PERTURBATION THEORY1 

Although frequently it is desirable to carry a perturbation treatment to second or third order for a 

degenerate state, the required calculations often become very complicated. A simple procedure due to Van 

Vleck makes this task considerably easier. 

I. Perturbation Theory and the Problem of Degeneracy[?, ?, ?] 

In many quantum mechanical problems, the Hamiltonian may be written 

H = H◦ + H′ (1) 

where the solution for the unperturbed Hamiltonian H◦ is known, and H′ is a small perturbation. Pertur­

bation theory may be used to find the small changes in the energy levels and wave functions introduced by 

H′ . 

If the matrix elements of H are evaluated in the H◦ representation, i.e., calculated with the unperturbed 

wave functions, the H◦ matrix is diagonal, 

H◦ = Ek
◦δk j.k j 

Several quantum numbers may be needed to label the states of H◦; here k represents the entire set. Some 

of the unperturbed states may be degenerate and k must then include an index to distinguish the members 

of the degenerate set. 

The perturbation matrix H′ will have off-diagonal terms which couple the various unperturbed states 

as well as diagonal terms which directly shift the energy levels. 

In the usual perturbation theory, the shift of a particular unperturbed energy level Ek
◦ and its wave 

function ψ◦k is evaluated by expanding the Hamiltonian in powers of a parameter λ, 

H = H◦ + λH′ + λ2H′′ + . . . (2) 

The solution of the Schrödinger equation, 

Hλ = Eλ (3) 

1These notes were written by Professor Dudley Herschbach. 
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is sought, where 

Ek = Ek
◦
+ λEk 

′ 
+ λ2Ek 

′′ 
+ . . .


λk = λk
◦
+ λψk 

′ 
+ λ2ψ′′ k + . . . (4)


which reduces to the unperturbed solution as λ 0. On substituting (4) into (3) and equating the coeffi­→
cients of like powers of λ, the perturbed energy levels are found to be 

∑ H′ H′ 
Ek = Ek

◦
+ λHkk 

′ 
+ λ2H′′ 

k j jk 
+ . . . (5) kk + λ

2 

Ek − E jj�k 

to second order. The first contributions are merely the perturbation averaged with the unperturbed wave 

function of state k. In the second order approximation, there is a sum over the influence of the other states. 

The energy level is displaced upward by the states of lower energy and downward by those of higher 

energy; the displacements are proportional to the square of the coupling term as given by the matrix 

elements of H′ and inversely proportional to the corresponding energy differences. 

However, if some states are degenerate with state k, the treatment must be modified because of the 

vanishing energy denominators which make (5) infinite (except, of course, in the special case that the 

offending terms have zero matrix elements, e.g., due to symmetry considerations). 

If the unperturbed Ek
◦ belongs to a group of gk degenerate levels, its wave function ψ◦k is not completely 

determined, but may be arbitrarily chosen to be any linear combination of a set of gk orthonormal functions 

associated with the degenerate level. The perturbation will in general cause energy splittings which at least 

remove the degeneracy to some extent. However, as λ 0, the perturbed wave function ψk will not, in → 
general, reduce to the arbitrarily chosen initial ψ◦k , as in (5), but will become a linear combination of the 

initial set of gk degenerate functions, the particular combination depending on the perturbation. To apply 

perturbation theory, one must then first determine this correct limiting linear combination and make the 

functions for the other unperturbed states that are degenerate with state k be orthogonal to state k. This 

requirement means that the transformation of matrix elements accompanying the transformation to these 

correct zero-order wave functions should uncouple the degenerate states in H′. Thus H′ becomes diagonal 

for the block of states that are degenerate with state k, and all the terms with vanishing denominators in 

(5) disappear. The determination of the zeroth-order wave functions therefore requires solving the secular 

equation, 

|H′(k) − ξ1| = 0 (6) 

which corresponds to diagonalizing H′(k), which is the gk × gk block of H′ that corresponds to the gk 

degenerate unperturbed states of energy Ek
◦. The solution immediately provides the diagonal term ξk in the 

transformed H′ which is needed for the first approximation in (5). However, if it is desired to evaluate the 
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second or higher order terms, then the off-diagonal matrix elements H′ coupling state k to all other states k j 

j must be transformed to correspond to the transformation to the correct zero-order wave function for state 

k. Moreover, in case the first order perturbation did not remove completely the degeneracy present in the 

unperturbed problem, as would happen if part of the H′matrix were diagonal and itself degenerate, then 

for the second order treatment it would be necessary to initially diagonalize the submatrix of the entire 

Hamiltonian that includes not only all second order terms H′′ , coupling state k to each state k′ degenerate kk′ 

with it, but also terms of the form H′ and H′ which couple the degenerate states in second order through k j k′ j 

other states j (see reference [?]). 

The program of the usual degenerate perturbation theory outlined above is often difficult or impossible 

to apply. The difficulty is the more serious because the upper, continuous portion of the energy spectrum 

can be handled only by introduction of an awkward box normalization or some equivalent. We shall now 

consider the Van Vleck procedure which brings great simplification because it allows any block of interest 

to be uncoupled (to third order) from the rest of the H′ matrix and afterwards diagonalized. This minimizes 

the size of the secular equations that must be solved, and there is ordinarily no difficulty in diagonalizing 

those blocks of H′ associated with the lower unperturbed energy levels in which there is greatest physical 

interest. 

II. The Van Vleck Transformation 

Although the Van Vleck method has been applied to a variety of problems, it is seldom described in the 

literature. Only the discussion by Kemble[?] is more than two or three paragraphs. The method was first 

used by Van Vleck in his classic paper on sigma type doubling and electron spin.[?] One of his students, 

Jordahl, in a paper on paramagnetic susceptibility,[?] carried the method to third order but omitted the 

derivation; also his formula has two minor but misleading errors. Other papers include applications to 

rotation-vibration interactions,[?, ?] hindered internal rotation,[?] and the Stark effect.[?] 

Van Vleck introduced a canonical transformation, T(λ), which eliminates the terms of first order in λ 

from the matrix elements of H′ connecting any particular unperturbed energy Ek
◦ with the other distinct 

unperturbed levels. The remaining coupling terms are then of second order or higher, and since they are 

off-diagonal, they cannot contribute to the energy until fourth order. Therefore, they may be neglected 

immediately if the theory is taken only to second or third order, which is usually adequate in practice. This 

uncoupling of the blocks of H′ permits the separate treatment of each block, up to third order. 

For convenience, we shall label the states in the H′ block of interest by m or m′, and states outside 

this block by n or n′. We need not be confined to the case in which the unperturbed states corresponding 

to the m block are degenerate; often the unperturbed energy levels may be grouped into widely spaced 
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sets given by one quantum number (q, say), each set consisting of fine structure levels distinguished by 

other quantum numbers, and the Van Vleck transformation may be used to approximately diagonalize the 

Hamiltonian in q. In this case m is identified with the principal quantum number q, so it has the same 

value for all states of the m block and the formulas are simplified. After the transformation, the block is 

then diagonalized in the other quantum numbers to obtain the fine structure. 

The Van Vleck transformation may be derived by replacing ψ◦ in the expansion of ψm in (4) by a m 

linear combination of the gm degenerate unperturbed functions with arbitrary coefficients which are to be 

determined from the Schrödinger equation and the condition of orthonormality, as in the derivation of the 

usual perturbation theory formulas (see Ref. 5, §4; ref. 2, p. 154). This essentially amounts to carrying 

out the diagonalization required to remove the degeneracy only up to the order in λ of interest rather 

than exactly. The derivation we shall present here, however, is shorter and deals directly with the matrix 

transformation. 

The transformation T(λ) is to be unitary, and may be conveniently written in terms of a Hermitian 

matrix S as 

T = eiλS 
= 1 + iλS − 

λ2 

S2 
+ . . . (7) 

2 
We wish to construct T so that the first order term in the Hamiltonian, 

T†HT = G(λ) = G◦ + λG′ + λ2G′′ + . . . (8) 

has vanishing matrix elements between the m and n blocks, or G′ = 0. mn 

Schematically, 
mm′ mn mm′ 0(λ2)

T† T = . 
nm nn′ 0(λ2) nn′ 

On expanding (8) 

G◦ + λG′ + λ2G′′ + . . . 

λ2 λ2 

= 1 − iλS − S2 
+ . . . [H◦ + λH′ + λ2H′′ + . . . ] 1 + iλS − S2 

+ . . . (9) 
2 2 

and equating coefficients of like powers of λ, one obtains 

G◦ = H◦ 

G′ = H′ + i(H◦S − SH◦) 
1

G′′ = H′′ + i(H′S − SH′) + SH◦S − (H◦S2 
+ S2H◦)

2

G′′′ = H′′′ + i(H′′S − SH′′) + SH′S − 
1

[H′S2 
+ S2H′] + 

i 
(SH◦S2 − S2H◦S) − 

i 
(H◦S3 − S3H◦)

2 2 6
. . . (10) 
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If we choose, 

S mm′ = 0, S nn′ = 0 (11) 

then T does not directly affect the m or n blocks. To make G′ = 0, we require from (10) mn 

iH′ 
S mn = 

mn 
. (12) 

Em − En 

Thus the desired transformation has been constructed; it is seen to depend on the particular unperturbed 

level to be dealt with. 

On using (11) and (12) in (10), we obtain the formula for the transformed matrix elements of the mm′ 

block, without the necessity of carrying out an exact diagonalization to obtain the proper zero-order wave 

function. By straightforward algebra, the result is to third order, 

λ2 ∑ H′ H′ H′ H′

= E◦ + λH′ + λ2H′′ + + + λ3H′′′
Gmm′ mδmm′ mm′ mm′ 

mn nm′ mn nm′ 
mm′2 Em − En Em′ − Enn 

λ3 ∑ H′ H′′ H′′ H′ λ3 ∑∑ H′ H′ H′ H′ H′ H′ mn nm′ mn nm′ mm′′ m′′n nm′ mn nm′′ m′′n′ 
+ + +

2 
n 

Em − En Em′ − En 
− 

2 
n m′′ 

(Em′′ − En)(Em 
′ − En) (Em − En)(Em′′ − En) 

∑∑ H′ H′ H′ 
+ λ3 mn nn′ n′m′ (13) 

(Em − En)(Em′ − En′ )n n′ 

Here the superscript zero is omitted in denominators, for simplicity. This block of the G matrix may now 

be treated independently of the rest; on diagonalization by exact or approximate methods (e.g., pertur­

bation methods might be applied within the block), the associated energy levels can be obtained to third 

order. 

As mentioned above, the special case in which m has only one value is often useful, and the corre­

sponding simplification of (13) is included in (14), below. 

To extend the theory to fourth order, Eq. (10) is continued. The off-diagonal elements Gmn, which are 

0(λ2) by construction, are evaluated from (10), (11), and (12), and the Van Vleck transformation is applied 

to remove the coupling terms in λ2 from the Gmn, thus adding an additional term in λ4 to the Gmm′ . We 

give the result only for the case in which m takes just one value and H = H◦ + λH′, since the fourth order 

contribution would seldom be desired for the more general case. 

mn nm Gmm = Em
◦
+ λHmm 

′ 
+ λ2 H′ H′ nm 

+ λ3 Hmn
′ Hnn

′
′ Hn
′
′m 

mm 

Hmn
′ H′ 

Em − En (Em − En)(Em − En′ ) 
− λ3H′ 

(Em − En)2 
n n n′ n 

+ λ4 
∑∑∑ Hmn

′ Hnn
′
′ Hn
′
′n′′ Hn

′ 
′′m 

+ λ4[H′ ]2 
∑ H′ Hnm 

′ 
mn


(Em − En)(Em − En′ )(Em − En′′ ) 
mm (Em − En)3


n n′ n′′ n

  

∑ H′ H′ 


∑ H′ H′ 

 ∑∑ H′ H′ H′ H′ H′ H′ 
− λ4 mn nm 





 mn nm 

)2 




 − λ4H′ mn nn′ n′m 
+ 

mn nn′ n′m 

Em − En 
 

(Em − En
mm (Em − En)2(Em − En′ ) (Em − En)(Em − En′ )n n n n′ 

(14) 
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III. A Favorite Example: Coupled Harmonic Oscillators 

As a simple example, we treat the ground and first excited state of two coupled linear harmonic oscillators 

to second order by both the usual perturbation theory and the Van Vleck transformation. The Hamiltonian 

is 

∂2 ∂2 

H◦ = H◦x + H
◦
y = − ∂x2 

+ 
∂y2 

+ x2 
+ y2 

λH′ = λxy (15) 

where appropriate units have been chosen to eliminate the constant factors. In these units, the unperturbed 

energy levels for a single oscillator are just the odd integers, 

En
◦
= 1, 3, 5, . . . 2n + 1 (16) 

and the coordinate matrix elements are 

m n 
xmn = δm,n+1 + δm+1,n. (17) 

2 2

The unperturbed energy levels, 

E◦ = 2(n + n′ + 1), (18) nn′ 

may be conveniently labeled by the quantum numbers n and n′ for the individual oscillators. Except for 

the lowest level, they are degenerate with the weight, 

gnn′ = n + n′ + 1. (19) 

The unperturbed wave functions are just products of those for the separate oscillators, 

ψ◦ (x, y) = ψ◦(x)ψ◦ (y). (20) nn′ n n′ 

The matrix elements of the perturbation are found from (17), 

H′ = (21) mn,m′n′ xmm′ ynn′ 
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thus the Hamiltonian matrix is 

00 
01 
10 
20 
11 
02 

30 

21 

12 

03 

00 
2 

λ 
2 

01 10 

4 λ 
2 

λ 42 

λ √
2 

λ √
2 

20 11 02 
λ 
2 

6 λ √
2 

λ √
2 

6 λ √
2 

λ √
2 

6 
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30 21 12 03 

λ √
2 

λ √
2 

(22) 

8 √
3λ 
2 

√
3λ 
2 

8 

λ 

λ 

8 
√

3λ 
2 

√
3λ 
2 

8 

where only the non-zero elements are given. 

For the ground state, the non-degenerate perturbation formula (5) may be applied (the Van Vleck 

formula (14) is the same in this case), 
)2

λ 
λ2 

2
E00 = 2 + 0 +
 2 −
 .
 (23)
=


2 − 6
 16


To treat the degenerate first excited state, the corresponding 2×2 block in H′ must first be diagonalized 

to obtain the zero order wave functions. 

The secular equation (6) is 
01 10 

λ

01

10


=
 0
 or ξ = ± λ (24a) +ξ
 2 2
λ ξ
2 

Therefore the degeneracy is split in first order and the first order perturbation energies are, 

λ λ 
E
+

′ 
01 = 2

, E−
′ 

01 = −2 
. (24b) 

The eigenvectors of (24b) are √1
2
(1, 1) and √1

2
(1, −1), so the correct zero-order combinations of the degen­

erate unperturbed wave functions are 

1

ψ◦0(x)ψ◦1(y) + ψ◦1(x)ψ◦0(y)

] 

ψ◦0(x)ψ◦1(y) − ψ1
◦(x)ψ◦0(y)

] 
(24c) 

ψ◦
+01 = √

2 
1


ψ◦−01 = √
2 

In order to apply the usual perturbation theory in second order, the off-diagonal matrix elements coupling 

the first excited state block to others in (22) must first be transformed in accordance with the transforma­

tion (24c) to the correct zero-order first excited state wave functions. Due to the “next–door–neighbor” 
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selection rule in (17), the +01 and −01 levels are coupled only to the 21 and 12 levels and on recomputing 

the matrix elements (21) by (17) and (24c), the relevant part of the matrix (22) becomes, 

+01 −01 . . . 21 12 
λλλ

+01
 2 2 2 

λλλ −01 −
 2 2 2− 
(24d) ...


λ 
2 − λ 

2 

λ λ 
2 2 

21


12


Thus the second order perturbation energies are 
)2 

λ2λ 

2
2 

.
 (24e) =E
+

′′ 
01 E−

′′ 
01 =
 −


8

=


4 − 8

The series of steps in Eqs. (24) may now be contrasted with the Van Vleck transformation. On applying 

(13) directly to (22), the block of interest is uncoupled and its secular equation may be set up as 
)2 

λ √
2 

4−8 − E′ λ 
2 = 0 (25)
)2 

λ √
2 

4−8 − E′λ 
2 

with E = 4 + E′. Thus we have 
)2 

)2λ2 λ
0
= 

−8 
− E′ − 

2 
from which the perturbation energy is found to be 

λ2λ

E′ = ±

2 
−
 .


8


zero 
order 

first 
order 

second 
order 

30,12,21,03 8 

20,11,02 

10,01 

6 

4 

λ 
2 

λ 
2 

+ 

– 

λ2 

8 
– 

λ2 
– 

8 
00 2 

λ2 
– 

16 

Figure 1: Energy levels for coupled oscillators. 
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