
   

    

    

          
     

      
 

   

 

            
      

       

         

     

    

         
    

  

   

    
 

          
  

 
        

 
    

 
           

   
  

  
  

 

   

 
  

   

5.73 Lecture #9 9 - 1 
Numerov-Cooley Method : 1-D Schr. Eq. 

Last time: Rydberg, Klein, Rees Method and Long-Range Model 
G(v), B(v) rotation-vibration constants 

VJ(x) potential energy curve 

x = R – Re 

Ev ,J ,ψv ,J ,  all conceivable experiments including wavepackets, wp(x,t ) 

Treated in Lectures !− Eit #19 and #20wp(x,t) = ∑aiψ ie 
i 

determined by VJ(x) 
free evolution of wp 

Initial preparation of wp: ai = ∫ ψ* 
i ⎡⎣wp(x,0)⎤⎦ dx 

Completeness: Any arbitrary wavefunction may be expanded as a linear 
combination of eigenstates of H. 

Method for RKR derivation: A(E,J) = area of V(x) below E: 

used WKB Quantization Condition 

obtained x±(E,J) – a series of pairs of turning points on a grid of E. 

Today: What do we do when we have a potential energy curve, VJ(x), (especially when 
V(x) is not suited for WKB)? 

No models 
Solve Schr. Eq. numerically! 

15 digit reproducibility 

cheap 

This is the final tool we will develop for use in the Schrödinger representation. To summarize 
the classes of 1–D problem we are able to solve: 

* piecewise constant potentials (matrix approach for joining at ψ(x) boundaries) 

* Airy functions (linear potential and joining JWKB across turning point) 

* JWKB (quantization condition and semi-classical wavefunctions) 
See Merzbacher 

* numerical integration (today) Quantum Mechanics 
pp. 92-103 

updated 8/13/20 8:22 AM 



   

    

     

  
 

         
     

           
        

   

       

           

            
     

         

  

     

 

           
     

              
      

   

 

 
          

        

           
   
        

 
          

     
        

 

 

5.73 Lecture #9 9 - 2 
Numerical Integration of the 1-D Schrödinger Equation 

WKB OK here 

NOT HERE widely used 
incredibly accurate 
no restrictions on V(x) or on E–V(x) [e.g. nonclassical region, near turning 

points, double minimum potential, kinks in V(x).] 
For most 1-D problems, where all one cares about is a set of {Ei, ψi}, where ψi is 

defined on a grid of points xi, one uses Numerov-Cooley 

leroy.uwaterloo.ca/programs.html 
LEVEL: A computer program for solving the radial Schrödinger equation for bound 
and quasibound levels 
R.J. Le Roy, Journal of Quantitative Spectroscopy and Radiative Transfer 186, 167-178 
(2016). 
RKR1 – A Computer Program implementing the first-order RKR method for 
determining diatomic molecule potential energy functions 
R.J. Le Roy, Journal of Quantitative Spectroscopy and Radiative Transfer 186, 158-166 
(2016). 

J. A.Tellinghuisen, "Potential Fitting RKR Method: Semiclassical vs. Quantal 
Comparisons". Journal of Molecular Spectroscopy. 330, 20-27 (2016). 

Supplements for Lecture #9: 

1. Cooley, Math. Comput. 15, 363 (1961). 

2. Press et. al., Numerical Recipes, Chapters 16 and 17 

3. Classic unpublished paper by Zare and Cashion with listing of Fortran 
program [now better to see LeRoy web site] 

4. Tests of Numerov-Cooley vs. other methods by Tellinghuisen 

5. LeRoy JQSRT paper 

Basic Idea: grid method 

* solve differential equation by starting at some xi and propagating trial 
solution from one grid point to the next 

* apply ψ(x) = 0 boundary conditions at x = 0 and ∞ by two different tricks and 
then force agreement between �left(x) and �right(x) at some intermediate point 
by adjusting E. 

updated 8/13/20 8:22 AM 
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d 2ψ
dx2

=V(x)ψ(x)

dψ
dx xi

≡ ψ i+1 − ψ i

h

d 2ψ
dx2 xi

= ψ i+1 − ψ i

h
⎡
⎣⎢

⎤
⎦⎥
− ψ i − ψ i−1

h
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
h

= h−2 ψ i+1 − 2ψ i +ψ i−1[ ]

f xn,ψn( ) = dψ
dx xn

≈
ψn+1 − ψ n
xn+1 − xn

=
ψn+1 − ψ n

h

Euler’s Method 

want ψ(x) at a series of grid points x0, x1, …xn = x0+nh 

call these ψi = ψ(xi) 

Need a “generating function,” f(xn, ψn) 

ψ n+1 = ψn + hf xn ,ψn( )
↑$
increment 
in x 
xn+1 – xn = h [NOT Planck’s constant] 

prescription for going n → n + 1 must 
depend on both xn 
and ψn.  xn samples 
potential, ψn samples 
previous value of ψ. 

The value of this derivative actually comes from the 
differential equation thatψmust satisfy, not from 
prior knowledge of ψ(x) (which we do not yet have!) 

(ψn is a number, not the entire wavefunction.) 
For the Euler method, the generating function is simply: 

µA =
m1m2
m1 +m2

 h  h  h  
•  •  •  • 
x0  x1  x2   

 

 

For the Schrödinger Eqn. d
2ψ
dx2 = – 2µ

!2 (E −U(x))ψ

All constants absorbed in V(x).  V(x) must be in units of Å–2. 

Planck 

not Planck 

		 
note	that	V(x)= −k(x)2 = −p(x)2

!2

(Planck’s constant h is in italics, grid spacing h is not italic.) 

V (x) ≡C U (x)− E[ ] U (x) is the potential.

C = 10−16 8π2cµ h( ) h here is not  increment of distance,

= 0.0593203146µA h and x  are in Å.  E  and U (x) are in

µA  in amu = gram
mole

, 12C  ⎛
⎝⎜

⎞
⎠⎟ cm-1  units (E /hc)
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Schr. Eq. tells us the rule for propagating ψ.  Employing Euler’s method (h is 
not Planck’s constant):

h−2 ψi+1 − 2ψ i +ψi−1[ ] = Viψi
ψ i+1 − 2ψi + ψi−1 = h

2Viψi
ψ i+1 = 2ψi − ψi−1 + h2Viψi

In order to get things started we need two values of ψ starting 
at either edge of the region where ψ is defined and ψ starts out 
very small. 
[See Press et. al. handout (Numerical Recipes, Chapters 16 and 17) 
for discussion of nth-order Runge-Kutta method.  The generator is 
chosen more cleverly than in the Euler method so that stepping 
errors are minimized by taking more derivatives at intermediate 
points in the xi, xi+1 interval.] 

Cooley specifies 

  

yi+1 = 2yi − yi−1 + h2Viψ i

yi = 1− h2 12( )Vi
⎡
⎣

⎤
⎦ψ i (and vice versa)

  

The result is that the error in ψ i+1  is on the order of 

h6

240
ψ iVi  — smaller error if h is smaller

(Cooley’s method is much better than Euler’s,  which converges as 
a smaller power of h) 

rearrange to solve for ψi+1 
 
 
 
a recursion relationship.  Need both ψi and 
ψi–1 to get ψi+1. 

* use ψι to get yi 
* use ψi and yi (and yi–1) to get yi+1 
* use yi+1 to get ψi+1 
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So what do we do? 

� 

 e.g., VMORSE (R) = De 1− e−β R−Re( )[ ]2
− De

V(∞ ) = 0, V(Re ) = −De

or, more generally than Morse, use VJ,RKR. 
x = R – Re (displacement from equilibrium) 
at R = 0   x = –Re  ψ(–Re) = 0 

 R = ∞    ψ(∞) = 0 

The two boundary conditions are handled differently, 
because we want to define a finite # of equally spaced grid 
points (not actually necessary — see Press: he uses a 
variable grid spacing, which is needed to sample an infinite 
range of x with a finite number of grid points) 

Use this to start the integration outward.  When we 
discover later that we made a wrong choice for ψ1, this is 
corrected merely by dividing all ψi  i ≥ 1 by an i-independent 
correction factor. 

at R = 0   ψ0 ≡ 0  (required) 
   ψ1 = 10–20  (arbitrarily chosen small  
    number, which will be 
   corrected later upon normalization) 

� 

⎫ 
⎬ 
⎭ 
boundary conditions

*
experience — doesn't really matter for ψ1 

[zero of V at dissociation] 

0

–De

0 R–(E) Re R+(E) R
turning points
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At large R (in the classically forbidden region), choose ψn at the last grid point, 
xn, to be small and use WKB only once to compute the next to last grid point.  We 
do this because we have no reason to extend the calculation to x → ∞. 

 

ψn = 10–30  (the final grid point)  (based on experience) 

 
ψWKB = p

−1/2 exp − 1
!

p
R+ (E )

x

∫ dx⎡
⎣⎢

⎤
⎦⎥

 

V(x) ≡ − 2m
!2

E −U (x)( ) = p
2

!2

pn = 2m E −Un( )⎡⎣ ⎤⎦
1/2 ≡ !Vn

1/2

U n =U xn( )

f (x)
x−

x+∫ dx = hf
i (x− )

i (x+ )

∑ (xi )

integrating inward from outer turning point. 

WKB gives us the ratio 

pn–1 ≈ pn so pre-exponential terms cancel.  Evaluate integral in exp as a sum. 

   

ψ n−1

ψ n

=
pn−1

−1/2
exp − 1

!
pn−1R+ ( E )

xn−1∫ dx
⎡
⎣⎢

⎤
⎦⎥

pn

−1/2
exp − 1

!
pnR+ ( E )

xn∫ dx
⎡
⎣⎢

⎤
⎦⎥
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and ea+b+c = eaebec ,  and ea+b+c

ea+b+c+d = 1
ed .

But we chose ψn = 10–30 
 
 thus ψ n−1 = 10

−30 exp Vn
1/2h⎡⎣ ⎤⎦  

So we have ψn and ψn–1 and we are off to the races. 

ψ 0 →ψ1→ψ 2 →→→ψm ψm ←←←ψ n−1 ←ψ n

m 

meet in the middle at  ψm. 

fi

fi+1

fi+2 fi+3

h h h h h h
x 
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V(x) 

outermost 
lobe of ψ$ F

asymptotic 
approach to 0 

maximum 
of |ψ| at  

 ψ xm( )

Set value of ψm = 1.0 by renormalizing both functions  

  

� 

*  ψ from n, n − 1, …m ! replace each ψi by ψi ψm 
    (from the right) for all i down to m.
*  ψ from i = 0, 1, …m ! replace each ψi by ψi ψm 
    (from the left) for all i up to m.

′ ψ i =
ψi
ψm

′ ψ m =1

The renormalized ψ's are denoted by ψ′.  

xm 

ψ′ must be continuous, 
especially at the joining grid 
point, m.  

Use the outermost lobe because this is the global maximum of ψ(x). This choice 
minimizes the problem of precision being limited by the finite number of 
significant figures in the computer. 

Stop the inward propagation of ψ when a point is reached where, for the first 
time, |ψm| > |ψm+1|. This locates the first maximum of ψ inside the outer 
turning point. 
 
Since |ψi| is exponentially increasing from 10–30 at i=n until it reaches its 
first maximum inside the classically allowed region, this outer lobe of ψ is 
also the most important feature of ψ (because most of the probability resides 
in it). 
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This ensures that ψ(x) is continuous everywhere and that it satisfies grid form of 
Schr. Eq. everywhere except at i = m. 

0 = –ψ i+1 + 2ψ i − ψ i−1( )+ h2Viψ i

In order to satisfy Schr. Eq. for i = m, it is necessary to adjust E.  The above 
equation can be viewed as a nonlinear requirement on E.  At the crucial grid 
point i = m, define an error function, F(E). 

where, by varying E, we want to search for the zeroes of F(E). 

 

Assume that F(E) can be expanded about E1 (E1 is the initial, randomly chosen 
value of E.) 

F E( ) = –ψm+1
E + 2ψm

E − ψm−1
E( )+ h2VmEψmE

  
F E( ) = F E1( ) + dF

dE E1

E − E1( )  + 
discard higher terms

(linearization approximation): Newton-Raphson

and solve for the value of E where F(E) = 0.   

Call this  E2 

0 = F E1( ) + dF
dE E1

E2 − E1( )

E2 = −
F E1( )

dF dE( )E1

+ E1

Correction to E1

This gives an 
estimate of where 
the zero of F(E) 
nearest E1 is 
located. 



9 - 10 5.73 Lecture #9 

updated 8/13/20 8:22 AM 

Usual approach:  compute  dF
dE E1

=
F E1 + δ( )− F E1( )

δ

Once the derivative is known, use it to compute the trial correction to E1 
(assuming linearity). 

Iterate until the correction, ∆, to E is smaller than a pre-set convergence 
criterion, ε. This seems like a lot of work, but the computer does not complain. 

E2 = E1 + Δ Δ ≡ –
F E1( )
dF dE( )E1

Now we have one not-yet-normalized eigenfunction of H and the 
corresponding eigenvalue, E. 

Normalize ψE  by dividing by ψ *ψ dx∫
1/2

= NE

ψ *ψ dx = ψi
2 h

i=0

n
∑∫

ψE xi( ) = ψi

ψ j
2h

j
∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

ψreal for bound 1-D 
function 

Newton-Raphson 
method for solving 
nonlinear equation 

Recall that normalization  

integral is evaluated by 
summation over grid points. 

This procedure has been used and tested by many workers.  The latest and 
extensively documented version, “Level 16” is obtainable at Robert LeRoy’s web 
site:  

 http://dx.doi.org/10.1016/j.jqsrt.2016.05.028 

LEVEL: A computer program for solving the radial Schrödinger equation for bound 
and quasi-bound levels, Robert J. LeRoy. 

I will assign some problems based on Numerov-Cooley method for integrating the 
1-D Schr. Eq.

box normalized: 

Are we done? Not quite done if 
F(E) is not sufficiently linear 
near Ei.  Keep iterating! 

https://www.sciencedirect.com/science/article/pii/S0022407316300978?via%3Dihub
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