5.73 Lecture #7 7-1

JWKB QUANTIZATION CONDITION

Last time:
1. V(x)=o0x ¢(p)=Nexp{—L(Ep—p3/6m):‘
ho
y(x)= Ai(z) * zeroes of Ai, Ai’ (and Bi, Bi")

* tables of Ai (and Bi)
* asymptotic forms far from turning points

2. Semi-Classical Approximation for WV (x)
1/2 modifies classical to make it
s —[(E—
p(x)= [(E V(X))Zm] QM wavefunction (oscillatory)
“classical
wavefunction”

/2 [N PR
© w00 =[p0o P exp| £ | p(x')dx - _
(nodeless) envelope Camm-mmmfommmmm- adjustable phase to satisfy

wiggly- variable Kx) boundary Conditions

* ¥ without differential equation
* qualitative behavior of integrals (stationary phase)

*validity : fl_k <1  wvalid when not too near a turning point.
X

[One reason for using semi-classical wavefunctions is that we often need to evaluate integrals

of the type ijépwj dx. If Op is a slow function of x, the phase factor is
expi[ p.(x)— p.(x’)}a’x’. Take 4 =0 to find the stationary phase pointx_ .
h J ! dx s.p.

Ox is range about x, ,. over which phase changes by +m/2. Integral is equal to / (stpA)SX-]
Logical Structure of pages 6-11 to 6-14 (not covered in lecture):

1. V jwip 1s not valid (it blows up) near turning point — .. we can’t use
Yywkp to match W' s on either side of turning point.

2. However, near a turning point, x,(E), every well-behaved V(x) looks like a
linear poteintal
dV . . .
V(x)= V(Xi (E)) T (X - Xr) first term in a Taylor series.

X=Xy

This makes it possible to use Airy functions for any V(x) near turning point.

updated 8/13/20 8:21 AM



5.73 Lecture #7

7 -2

(and phase) across the

3. asymptotic-Airy functions have matched amplitudes
JWKB validity-gap that straddles the turning point.
4. V jwie for a linear V(x) is identical to asymptotic-Airy!

It may be grubby, but it works!
TODAY

1.

Summary of regions of validity for Airy, a-Airy, /-JWKB, and JWKB on

both sides of turning point. This seems complicated, but it leads to a result

that will be exceptionally useful!

avefunctions!

2. WKB quantization condition: energy levels without w

3. compute density of states dny/dE: (for box normalization — can then
convert to any other kind of normalization)

4. trivial solution of Harmonic Oscillator

E,=ho (v+1/2) v=0,1,2...

Non-lecture (from pages 6-12 to 6-14)

-1/12 1/2
: ~1/12( 2mo /4 . | 2(2mo 3/2 T
classical _ =T —_— a—x sin| —| —— a—x +—
Va-AIRY [ 2 ] ( ) L( 2 j ( ) 4:l
-1/12 ~1/12 i /2
. T 2mo —1/4 2 ( 2mo 3/2
forbidden _ =— X —a exp| —= X—a
Va—-AIRY 5 (Th j ( ) p 3[7 ] ( )
1/2
_ 2(2
classical W\~ IWKB = C (a—x) 1/4sin{§ hizaj (a—x)3/2+¢}
2(2mo \'?
forbidden Y /_ JTWKB = D (x— a)_l/ 4exp —E(T) (x = a)3/ 2
fi

C, D, and ¢ are determined by matching.

These Airy functions are not normalized, but each pair has the correct relative
amplitude on opposite sides of the turning point. /-JWKB has same functional
form as a-Airy. This permits us to link pairs of JWKB functions across invalid-
JWKB region and then use JWKB to extend y(x) into regions further from

turning point where the linear approximation to V(x) is no longer valid (and no

longer required).
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Regions of Validity Near Turning Point E = V(x+(E))

JWKB region

(-JWKB and a-AIRY

Llnea'{r V) Linear V(x) = ax

1

OK at t.p. 1

but not too >

far : QC_,_(E)
:
1
1

OK at edges :

of Airy W AIRY 1

region :
1
1

OK far enough I : I ASYMPTOTIC AIRY FOR
from t.p. Vo amy | LINEAR V(x)
1
1
L JWKB < : } > EXACT V¥V JWEKB
I
|
1
OR atosekal YV wks l_, ! l_‘ Common Validity of

:
1

Common regions of validity for W, ary and e ywks — same functional form,
specify amplitude and phase for y wks(X) valid far from turning point for exact

V(x)!
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Quantization of E in Arbitrary Shaped Wells

I V(x) =~ E—a(x —a) I V(x) =~ E+B(x—b) 1
Vix))=E .. x_(E)=a Vix)=E . x,(E)=b
e o >0 B>0 “
2 b
x_(E)=a x;(E)=b X
left turning point right turning point

We already know how to splice across I, II and II, III regions, but how do

we match W’ s in the entire a < x <b region? (¥ propagated inward from x_(E) must
join smoothly onto W propagated inward from x,(E).)

_1n —%ﬁ p(x)dy| (forbidden region)
e X

. C
Region I W§WKB(X) = 5|p(x)| x<a

(Wreal, no oscill-
ations)

1 ¢a
Note carefully that the argument of exp[—g j |p(x")| dx,}
goes to —oo as x = — oo, thus W (—o0) — 0.

Note also that | W /C| increases monotonically as x increases up to x = a.

When you are doing matching for the first time, it is very important to
verify that the phase of Wvaries with x in the way you expect it to vary.
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Region 11 ‘//}I\?VKB (x)= Clp(x)|_1/ . sin[% _[:p(x') dx” + %} a<x<b

The first zero is located at an accumulated phase of (3/4)m inside x = a because
(3/4 + 1/4)r1 = i and sin 1 = 0. Why 1is this the first zero?

It does not matter that is invalid near x = and x = b.

Note that phase increases as x increases — as it must. The /4 is the extra
phase required by the AIRY splice across LII. It reflects the tunneling of Y (x)
into the forbidden region. This means the real state with tunneling lies at lower
energy than one that satisfies the incorrect Y(x.) = 0 boundary condition.

|PHASE| starts at /4 in classical region and always increases as one moves
(further into the classical region) away from the turning point.

NEVER FORGET THIS!

LS g
12 —gj.b\p(x ) dx
e

Region 111 W s () = %| p(x)| x>b

Note that phase advances monotonically (i.e. the phase
integral gets more positive) as x - oo.

. I .
"‘wJWKB| decreases monotonically to 0 as x > +oo.

X

_ . 1 ¢b
Region II again s (x)=C’| p(x) 12 SIH[EJ‘ p(x’)dx’+g}

note: the argument of sine starts at n/4 and increases as one goes
from x = b inward. In other words, opposite to W12, the argument
decreases from left to right!

But it must be true that y™(x)=y™(x) foralla<x <b !

There are 2 ways, C = C'and C = —C’,to satisfy this requirement.

1. sin(6(x))=sin[(-8(x))+(2n+1)n] AND C =C’ [\pl and y" have the same sign.]
——3 \ /

argur]r}znt argument

of y of y!

[sin® = —sin(—0), [sin(0+(2n+1))n:|:—sin9,
- sin@ =sin(-0+(2n+1)m)]
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2. sin(B(x)) =—sin[-0(x)+2nn] if C=-C’ [\pl and y" have opposite signs:I
now look at what the 2 cases require for the arguments

1. ForC=C’ |:%J.:pdx+£:|:—[%Jﬁpdx+g}+(2n+l)n n=0,12...

4
wll wll
a b
Ly b _ .z
2 (ja +prdx)— 2n+1)m 17
’ ’ "= hm!|2 1/2 Quantization: 159 )
b
2. ForC=-C" we get L p(x’)dx” =hn[2n—1/2] Quantization: %%%

hn=~h/2

combine the two:

b
L P(x")dx’ = h/2(n+1/2)|sx WKB quantization

n=0,12,... condition. Most important
'X result of this lecture.

C’'=C(-D"

note: n = 0 is lowest possible value

n is # of internal nodes because the argument always starts
at /4 and increases inward to (n + 3/4) T at the other

turning point.

inner t.p.  outer t.p.

for n=0 sin(7/r) — sin(3n/4) NO INTERNAL NODE

n=1 sin(7m/4) — sin(7n/4) 1 internal node

etc.

Node count tells what level it 1s. [pdx at arbitrary

E tells how many levels there are at E<E !
updated 8/13/20 8:21 AM
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13 . b dn 3 d
Density of States” —— Always a crucial hﬁ is thelclassical mechanical period lof oscillation.

dE quantity

large d—n, slow oscillation
dE

2 x,(E) oo, 1
n(E)—EjUE) pe(x)dx' ==

dn _2 dx, dx_  x.dp, (must take derivatives of the
JE h pE( ) dE ( ) dE + J‘xf d—Ed limits of integration as well as the
integrand)
butp, (x+) =0
dn 2 ¢x d ,
dH 1/2 ! A very widely
dE h > (2m)J. [2111 E V(X )) useful quantity!
you show that, for harmonic oscillator,
V(x)= lk)c2
2
W= (k/m)l/Z
that Z_Z = hi independent of E, thus the oscillation period of the
®

Harmonic Oscillator is independent of E.

A OO
Non-lecture \ _
x, =L
. . X
for general box normalization
. : dn L&

can still use this to compute aE because

ccl;;’ = (% (even though p, (x+) #0).

location of right hand turning point is independent of E.

Can always use WKB quantization to compute density of box-normalized
Vs, provided that E > V(x) everywhere except at the 2 turning points.
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Use WKB to solve a few “standard” problems. Since WKB is “semi-classical”,

expect it to work in the n —» oo limit. There could be some errors for a few of
the lowest-n E,’ s.

Harmonic Oscillator V(x) = kx?/2 (k 1s force constant, not wave vector)

p(x>=[2m(E—%kx2H/2 \ |

At turning points, V(xtp) =E andp(xtp) =0,

thus, at turning points x, = +[2E, /k]""

1
because E, = Ekxi

nm(n+1/2)= j_[ZE/k]liz[zm(E ~k/2)] " dx

w=-[26, /4]

. 1/2
Non-lecture: Dwight Integral Table #350.01 t = [a2 _ Xz]

2

Jtdxzx—t+a—sin_1(x/a)
2 2
here t =0 at both x, and x_

E,/k]"”

1=(2mk/2)" j oo e 2B /K= x 21"%d
1:(%) Eﬂ((n/Z)—(—n/Z))zn(%)l/z E,

12
m
use the nonlecture result: hn(n+1/2)= TC(E) E,

1/2
EH:h(£) (n+1/2)
m

—_—
()
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I suggest you apply WKB Quantization Condition to the following problems: See
Shankar pages 454-457.

Vee Vx)=alxl E o(n+1/2)*"

quartic V(x)=bx* E, oc(n+1/2)""
(=0,Hatom V(x)=cx' E, e<n’

harmonic V(x)= %kx2 E, o<(n+1/ 2)'

What does this tell you about the relationship between the exponents m and
o InV, o x®and E c n*?

Power of x Power of n

in V(x) in E(n)
-1 -2 /=0 H atom
1 2/3 Vee
2 1 Harmonic oscillator
4 4/3 Quartic oscillator

As power of x increases, power of n increases but slower.

Validity limits of WKB? surprisingly robust!

b d2v
? —>5  can’t be too large near the splice region

¥ splicing of \|1Ha Y 1
X

dA :
V¥ jwkB is bad when % 2 1 (A changes by more than itself for Ax =1 )
X

bad near turning points and near the minimum of V(x)

can’ t use WKB QC if there are more than 2 turning points
2

>- 1s not small and % >1
X dx

bad near bottom of well

(near both turning points). However, most wells look harmonic near
minimum and WKB gives exact result for harmonic oscillator - should be
more OK near the minimum of V(x) than one has any right to expect.

semi-classical: should be good in high-n limit. If exact E, has same form as
WKB QC at low-n, WKB E, is valid for all n.

H.O., Morse Oscillator...
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