
 

  

 

 

    

 

 
 

 

  

 
     

 

 

 

 
 
 

 

 

 
 
  

 

 

  

    

           

        

    

5.73 Lecture #7 7 - 1 

JWKB QUANTIZATION CONDITION 

Last time: 
⎤1. V (x) = αx φ(p) = N exp ⎡− 

i (Ep − p 3 6m)
⎦⎥⎢⎣ !α 

ψ(x) = Ai(z) * zeroes of Ai, Ai′ (and Bi, Bi )′ 
* tables of Ai (and Bi)
* asymptotic forms far from turning points

* ψ without differential equation
* qualitative behavior of integrals (stationary phase)

dλ
* validity : ≪ 1 valid  when not too near a turning point. 

dx 

[One reason for using semi-classical wavefunctions is that we often need to evaluate integrals 

of the type ∫ψ* 
iOpˆ ψ j dx. If Opˆ is a slow function of x, the phase factor is

i d ⎡ ⎤
exp ⎡⎣ pj (x′) − pi (x′)⎤⎦ dx′. Take ⎢ ⎥ = 0 to find the stationary phase point xs.p..h dx ⎣ ⎦
δx is range about x  over which phase changes by ± π / 2.  Integral is equal to I (x )δx.]s. p. s. p. 

Logical Structure of pages 6-11 to 6-14 (not covered in lecture): 

1. ψJWKB is not valid (it blows up) near turning point — ∴ we can’t use
�JWKB to match ψ’s on either side of turning point.

2. However, near a turning point, x±(E), every well-behaved V(x) looks like a
linear poteintal

dVV (x) ≈ V(x± (E )) + (x − x± ) first term in a Taylor series.dx x=x±
This makes it possible to use Airy functions for any V(x) near turning point. 
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adjustable phase to satisfy 
boundary conditions 

2. Semi-Classical Approximation for ψ(x)

* p(x) = [(E − V(x))2m]1/ 2

* ψ(x) = p(x)−1/ 2 exp⎢ ±
i x

∫ p(x ′ )

wiggly- variable k( x )

"! $ c# $ % 
dx ′ 

⎡ 

⎣ 

⎢ 

⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ envelope

modifies classical to make it 
QM wavefunction (oscillatory) 

“classical 
wavefunction” 

(nodeless) 



 
 
 

 
 
 

 
 
 

 
 
 

 

 
 
 

 

 
 
 

 
 
  

 
  

 
  

 
 

 

 
 
 

 

 
 
 

  
 
 
 

 
 
 

 

 
 
 

 

 
 
 

             
 
  

 

 

 
 
 

 

 
 
 

5.73 Lecture #7 7 - 2 

3. asymptotic-Airy functions have matched amplitudes (and phase) across the 
JWKB validity-gap that straddles the turning point. 

4. ψJWKB for a linear V(x) is identical to asymptotic-Airy! 

It may be grubby, but it works! 
TODAY 

1. Summary of regions of validity for Airy, a-Airy, ℓ-JWKB, and JWKB on 
both sides of turning point. This seems complicated, but it leads to a result 
that will be exceptionally useful! 

2. WKB quantization condition: energy levels without wavefunctions! 

3. compute density of states dnE/dE: (for box normalization — can then 
convert to any other kind of normalization) 

4. trivial solution of Harmonic Oscillator 
Ev = ℏω (v + 1/2) v = 0, 1, 2… 

Non-lecture  (from pages 6-12 to 6-14) 

−1/12 1/2 ⎤ 
⎥
⎥⎦ 

= π−1/12⎛⎜
⎝ 

2 mα⎞
⎟
⎠ 

⎛
⎜
⎝ 

2mα⎞
⎟
⎠ 

π 

4
)3 / 2 +classical ( (a − xψa −AIRY a − x 

!2 !2 

⎡ 
⎢
⎢⎣

) −1/ 4 sin 
2 
3 

−1/12 1/ 2−1/12 ⎛⎜
⎝ 

⎤ 
⎥ 
⎥⎦ 

π 2 mα⎞⎟
⎠ 

⎛⎜
⎝ 

2mα⎞⎟
⎠

)3 /2forbidden ( (ψa −AIRY x − a x − a= 
!2 !22 

⎡ 
⎢
⎢⎣

) −1/ 4 exp − 
2 
3 

1/2 ⎤⎛
⎜
⎝ 

2mα⎞
⎟
⎠

)3 / 2classical ψ ℓ− JWKB =  C ( (a − x a − x + φ⎥
⎥⎦!2 

⎡ 
⎢
⎢⎣

) −1/ 4 sin 
2 
3 

1/ 2 ⎤ 
⎥
⎥⎦ 

⎛⎜
⎝ 

2 mα⎞⎟
⎠

x − a)3/ 2forbidden ψ ℓ− JWKB = D ( (x − a 
!2 

⎡ 
⎢
⎢⎣

)−1/ 4 exp − 
2 
3 

C, D, and φ are determined by matching. 

These Airy functions are not normalized, but each pair has the correct relative 
amplitude on opposite sides of the turning point. ℓ-JWKB has same functional 
form as a-Airy. This permits us to link pairs of JWKB functions across invalid-
JWKB region and then use JWKB to extend ψ(x) into regions further from 
turning point where the linear approximation to V(x) is no longer valid (and no 
longer required). 

2
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5.73 Lecture #7 7 - 3 

Regions of Validity Near Turning Point E = V(x±(E)) 

Common regions of validity for ψa-AIRY and ψℓ-JWKB — same functional form, 
specify amplitude and phase for ψJWKB(x) valid far from turning point for exact 
V(x)! 

3
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5.73 Lecture #7 7 - 4 
Quantization of E in Arbitrary Shaped Wells 

IIIIII 

E 

a b 

V(x) ≈ E − α (x − a)
V(x– ) = E ∴ x– (E) = a

α > 0

V(x) ≈ E + β(x − b)
V(x+ ) = E ∴ x+ (E) = b

β > 0 ← ← 

xx− (E) = a x+ (E) = b 
left turning point right turning point 

We already know how to splice across I, II and II, III regions, but how do 

we match ψ’s in the entire a < x < b region? (ψpropagated inward from x–(E) must 
join smoothly ontoψpropagated inward from x+(E).) 

1 a (forbidden region)− p( x′)dx′ 
p(x) −1/2I CRegion I ψ JWKB (x) = e ! ∫x x < a 

(ψreal, no oscill-
ations) 

2 

When you are doing matching for the first time, it is very important to 
verify that the phase of ψvaries with x in the way you expect it to vary. 

4
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Note carefully that the argument of 

goes to –∞ as x → − ∞, thus ψI(–∞) → 0. 

Note also that |ψI/C| increases monotonically as x increases up to x = a. 

exp − 1
!

p(x ′) dx ′
x

a

∫⎡
⎢⎣

⎤
⎥⎦



 

  
   

  
 
  

 

 

 

 

      

 

  

  

  

  

5.73 Lecture #7 7 - 5 
⎡ x π⎤IIaRegion II ψ JWKB(x) = C p(x) −1/ 2 sin 

1 
p(x )dx′ + a < x < b∫ ′ ⎣ a ⎦⎢ ⎥! 4 

The first zero is located at an accumulated phase of (3/4)π inside x = a because 
(3/4 + 1/4)π = π and sin π = 0. Why is this the first zero? 

It does not matter that is invalid near x = and x = b. 

Note that phase increases as x increases – as it must. The π/4 is the extra 
phase required by the AIRY splice across I,II. It reflects the tunneling of ψ(x) 
into the forbidden region. This means the real state with tunneling lies at lower 
energy than one that satisfies the incorrect ψ(x±) = 0 boundary condition. 

∣PHASE∣ starts at π/4 in classical region and always increases as one moves 
(further into the classical region) away from the turning point. 
NEVER FORGET THIS! 

x 
− p(x′) dx′C′ p(x) −1/2 

1 ∫bRegion III III (x) = e ! x > bψ JWKB 2 
Note that phase advances monotonically (i.e. the phase 
integral gets more positive) as x → ∞.( 

∴ ψ III 
JWKB decreases monotonically to 0 as x → +∞.( 

⎡ b π ⎤IIb Region II again ψ JWKB (x) = C′ p(x) −1/2 sin 1 
∫ p(x′)dx′ + 

⎣⎢ x ⎥! 4 ⎦ 

note: the argument of sine starts at π/4 and increases as one goes 
from x = b inward. In other words, opposite to ψIIa, the argument 
decreases from left to right! 

But it must be true that ψ IIa (x) = ψ IIb (x) for all a < x < b  ! 

and C = –C′There are 2 ways, C = C′, ,to satisfy this requirement. 

1. sin(θ!(x)) = sin[(–θ(x))+ (2n +1)π] AND C = C′ ⎡⎣ψ
I  and ψ II  have the same sign.⎤⎦!"# #$ 

argument argument IIa of ψ IIb of ψ 

[sinθ = − sin(−θ), ⎡⎣sin(θ + (2n +1))π⎤⎦ = − sinθ, 

∴sinθ = sin(−θ + (2n +1)π)] 

5
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5.73 Lecture #7 7 - 6 

2. sin(θ(x)) = −sin[−θ(x) + 2nπ] if C = −C ′ ⎡⎣ψ
Ι  and ψ II  have opposite signs⎤⎦ 

now look at what the 2 cases require for the arguments 

⎡ 1 x π ⎤ ⎡ 1 b π ⎤1. For C = C ′ ∫ p dx + 
⎦⎥ 
= − ∫ p dx + 

⎦⎥ 
+ (2n +1)π n = 0,1,2… 

a x⎣⎢ ! 4 ⎣⎢ ! 4 
II II ψ a ψ b 

1 x b π π
∴ (∫a +∫x pdx) = (2n +1)π − − 
! 4 4 

b 5 9 
p(x ′)dx ′ = !π[2n +1/ 2] Quantization: 1

2 
, 
2 

, 
2 

,…∫a 
b 3 7 11

2. For C = −C ′ we get ∫ p(x ′)dx ′ = !π[2n −1/ 2] Quantization: 
2 

, 
2 

, 
2 

,… 
a 

!π = h / 2 

combine the two: 
** WKB quantization 
condition. Most important 

p( ′x )d ′x
a 

b

∫ = h / 2 n +1 2( ) 
n = 0,1, 2,… 

′C = C (−1)n result of this lecture. 

note: n = 0 is lowest possible value 

n is # of internal nodes because the argument always starts 
at π/4 and increases inward to (n + 3/4)π  at the other 
turning point. 

inner t.p. outer t.p. 

for n = 0 sin(π/r) ⟶ sin(3π/4) NO INTERNAL NODE 

n = 1 sin(π/4) ⟶ sin(7π/4) 1 internal node

 etc. 

Node count tells what level it is. ∫pdx at arbitrary 
Eprobe tells how many levels there are at E ≤ Eprobe! 
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5.73 Lecture #7 7 - 7 
“Density of States” 

dn 
dE 

Always a crucial 
quantity 

⎡ 
⎢
⎣ 
h 
dn 

dE 
 is the classical mechanical period of oscillation. 

⎤ 
⎥
⎦

large dn , slow oscillation 
dE

2 x+ ( E ) 1 
n(E)= pE (x′) dx′ −∫h x− ( E ) 2 
dn 2 ⎡ ( ) dx ( ) dx− 

x+ dpE ⎤ (must take derivatives of the 
= x + dx⎢ pE +

+ − pE x− ∫x−
⎥ limits of integration as well as thedE h dE dE dE⎣ ⎦ integrand)

but pE (x± ) ≡ 0 

dn 2 x+ d 1/2 
∴ = ∫ ⎡⎣2m( E −V (x′))⎤⎦ dx′ 

dE h x− dE 

dn 2 1 x+ −1/2 d 
A very widely 

= (2m)∫ ⎡⎣2m (E −V (x ′))⎤⎦ x ′ useful quantity!dE h 2 x− 

you show that, for harmonic oscillator, 

1V (x) = kx2 

2 
)1/2 ω ≡ (k m 

that dn 1 independent of E, thus the oscillation period of the
dE 

= 
!ω Harmonic Oscillator is independent of E. 

∞ 
Non-lecture x+ = L 
for general box normalization 

x– 

can still use this to compute dn  because 
dE 

dx+ 

dE 
= 0 (even though pE (x+ ) ≠ 0). 

location of right hand turning point is independent of E. 

Can always use WKB quantization to compute density of box-normalized 
ψE ’s, provided that E > V(x) everywhere except at the 2 turning points. 

7
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5.73 Lecture #7 7 - 8 
Use WKB to solve a few “standard” problems. Since WKB is “semi-classical”, we 
expect it to work in the n → ∞  limit. There could be some errors for a few of 
the lowest-n E ’s.n 

Harmonic Oscillator  V(x) = kx2/2 (k is force constant, not wave vector) 

1 p(x) = 2m E − kx2
⎜ 2 
⎛ 
⎝

⎡ 
⎢⎣ 

1/2 

⎟ 
⎤ 
⎥⎦ 

⎞ 
⎠

At turning points, V (xtp ) = E  and p(xtp ) = 0, 

]1/2 thus, at turning points x± = ±[2En k 
1 2because En = kx±2 

x+=[2En
!π(n +1/ 2) = ∫x− =−[2En 

k]1/2 

]1/2 
⎡⎣2m(En − kx2 2)⎤⎦ 

1/2 
dx 

k 

Non-lecture: Dwight Integral Table #350.01 t ≡ [a2 − x2 ]1/2 

xt
∫ t dx = 

2 
+ 

a2 

sin−1(x / a)
2 

here t = 0 at both x+  and x– 

2En k k − x2 ⎤⎦ 
1/2 
dx)1/2 [

I = (2mk 2 
]1/2 

]1/2 
⎡⎣2Enk∫−[2En 

⎡ ⎤ 
)1/2 ⎛ 2En ⎞I = (2mk 2 ⎠⎟ sin!

−11− sin−1(−1) ⎝⎜ k ⎢
⎢ 

"$#$%⎥
⎥ 

π/2 ⎣ –π / 2 ⎦ 
1/2 1/2 

⎛ m ⎞ ⎛ m ⎞I = En ((π 2) − (−π 2)) = π En⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟k k 

1/2 
⎛ m ⎞

use the nonlecture result: !π(n + 1/ 2) = π En⎝⎜ ⎠⎟k 
1/2 

⎛ k ⎞En = ! (n +1/ 2) ⎝⎜ m ⎠⎟ "$#$% 
ω 
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5.73 Lecture #7 7 - 9 

I suggest you apply WKB Quantization Condition to the following problems: See 
Shankar pages 454-457. 

Vee V (x) = a x E n ∝ (n +1/ 2)2/3 

quartic V (x) = bx 4 E n ∝ (n +1/ 2)4/3 

ℓ = 0,  H atom V (x) = cx −1 E n ∝ n−2 

1harmonic V (x) = kx 2 E n ∝ (n +1/ 2)1 

2 
What does this tell you about the relationship between the exponents m and 
α in Vm ∝ xm and En∝ nα?( 

Power of x Power of n 
in V(x) in E(n) 

–1 -2 ℓ = 0 H atom 

1 2/3 Vee 

2 1 Harmonic oscillator 

4 4/3 Quartic oscillator 

As power of x increases, power of n increases but slower.( 

Validity limits of WKB? surprisingly robust! 
* splicing of ψIIa , ψIIb ? 

d
dx

2V
2 can’t be too large near the splice region 

* ψ JWKB is bad when 
d
dx 
λ 

> 1 (λ changes by more than itself for ∆x =λ)(~ 

bad near turning points and near the minimum of V(x) 

* can’t use WKB QC if there are more than 2 turning points 

bad near bottom of well d 2V  is not small and dλ 
* dx 2 dx 

> 1 

(near both turning points). However, most wells look harmonic near 
minimum and WKB gives exact result for harmonic oscillator - should be 
more OK near the minimum of V(x) than one has any right to expect. 

* semi-classical: should be good in high-n limit. If exact En has same form as 
WKB QC at low-n, WKB En is valid for all n. 

H.O., Morse Oscillator… 

9
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