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5.73 Lecture #6 6-1

Lecture #6: Linear V(x). JWKB Approximation and Quantization
JWKB: Jeffreys, Wentzel, Kramers, Brillouin.

Last time: Normalization schemes for eigenfunctions which belong to
continuously variable eigenvalues.
identities
2. Vo> W, War s Wi, o different normalization schemes
trick using box normalization (6 is k,p,E)
( # states j( # particles )
00 Ox
o<l

<UL for box normalization

d. . )
4, ﬁ ("density of states") often needed - alternate method via JWKB next lecture

|V(x) = a x linear potential |
solve in momentum representation, ¢(p), and take F.T. to y(x) — Airy functions
Semi-classical (JWKB) approx. for y(x)

1”2
p(x)=[(E=V(x))2m] Classical mechanical momentum function|dependence on x.

-

-1/2 ] x<', ,
w(x)=|p(x) exp{ig_[c p(x)dx J

envelope

*visualize y(x) as plane wave with x-dependent wave vector
* useful for evaluating stationary phase integrals (localization, causality)
*x%x  gplicing across boundary between classical (E > V) and forbidden (E <V) regions] Next

lecture
WKB Quantization Condition

) pocra =2 (e y/2)n=o,,..
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5.73 Lecture #6

Linear Potential. V(x) = ax
A2

A=2 oz
2m

coordinate representation momentum representation

X — X p—op
A—>Ei X — ih—
P iox ap

note [X,p]= i7 in both
representations - prove this?

2 2 2
H=—h—d—2+ocx H=p—+ihoci
2m dx 2m dp
2nd order

, ) . Ist order - much easier!
differential equation

6-2
0=(H-E)o(p)
[P e g
0—[2m+1hocdp qu)(p)

Solve in momentum representation (a sometimes useful trick)

Schr. Eq. Ckg—;p): _h_i(x(E —p2/2m)¢(p

Form of Solution o(p)= Neir+tr’

\, ) gives p2 times ¢(p)
dp

=— when you take di

P
? gives constant times ¢(p) Must solve for a and b
p
plug into Schr. Eq. and identify correspondences, a= ]
term-by-term, to get ho
i
b=
6/iom
_ i 3 easy? Note that, if p is real
o(p) = Nexp ~—(Ep—p? / 6m)| i p s real,
P P 7106( PP ) ¢(p) is oscillatory

o*(Pop =1 .

N =1!
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5.73 Lecture #6 6-3

Now p is an observable, so it must be real. Thus ¢(p) is defined for all (real) p
and is oscillatory in p for all p. ¢(p) is NEVER exponentially increasing or
decreasing if p is real!

IT IS STRANGE THAT ¢(p) does not distinguish between classically allowed
and forbidden regions. IS THIS REALLY STRANGE? If we allow p to be
imaginary in order to deal with classically forbidden regions, ¢(p) becomes an
increasing or decreasing exponential. When we extend the solution to the
Schrodinger equation into the classically forbidden region, p is imaginary and
¢(p) is exponentially increasing or decreasing.

If we insist on working in the y(x) picture, we must perform a Fourier
Transform.

w0 =N ™ opdp

y(x)= N'J:i exp{%{p((xx —E)+p /6m}]dp

odd function of p: O(p)

e® =cosO+isin®
— —

even odd

J‘w sinO(p)dp =0  since sin O(p) is odd wrt p = —p.

—00

o0 | ox—E)p + 3/6m|
W(X):N,J._Oo COSL( )]‘:;lap Jdp Solution!

Ai(z)=m"" J:COS(S 3+ 5z)ds E=V(n=ox,

x,=E/a

Surprise! This is a named (Airy) function and a tabulated ir}t/e@

* numerical tables for x near turning point ie.,x~F/a
* analytic “asymptotic” functions for x far from turning point.

useful for deriving energy levels as an explicit function of
— quantum numbers and for matching wave functions across
boundaries.

* zeroes of Airy functions [Ai(z,)=0] and of derivatives of Airy
functions [A1'(z’,)=0] are tabulated. (Useful for matching across
center symmetry-point of potentials with definite even or odd
symmetry.) [Two kinds of Airy functions, Ai and Bi.]
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5.73 Lecture #6

3
Ai(z)= n_l/zj(o)o cos[s?+ sszs

s= p(2mho)™"? (if >0)

for our specific problem _
z= M|:2moc/1*12 :|1/3
o

Turning point
gp V()
V(x) =ox oa>0
E

v

x,(E)
At a turning point E = V(x+) =0,

K (E)=E/a *

Problems with linear potentials:

boundary conditions

V) —oX +ox ax
When there is symmetry (or 1/2 symmetry) we need to know the locations of the
zeroes of dy / dx and Y(x)
— —_
for even functions for odd functions
or o= barrier tables of zeroes of
Ai(z) and Ai’(z) See Handout

n n n,’n
Zn Zn
When there is no symmetry, must match or join Ai (or, more precisely, a linear

combination of Ai and Bi) and Ai’ across boundaries, but we do not need to actually
look at the Airy function itself near the joining point.

Updated 8/13/20 8:20 AM
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5.73 Lecture #6 6-5

E /(x < This 1s not as bad as it seems because we are
/ usually far from the turning point at an
> internal joining point and can use analytic
/ X asymptotic expressions for Ai(z).

2 linear potentials of

For o > 0 there are 2 cases (classical and non-classical regions) different |slope].

(1) z<0,E>V(x) classically allowed region

2 .

. -1/2 ~1/4 _; 3/2

Ai(z)> 7 (W:Sée) sin E(xisﬁ’ire) +1/4 asymptotic form for z < 0.
phase

shift

* oscillatory, but wave vector, k, varies with x

. . -1/4
* Ai vanishes as x — —oo because of (-z) /% factor

* Bi is needed for case where Airy function must vanish as x — +ec in classical region

(i) |[z>>0, E <V (x) forbidden region

Ai(z) > (w12 /2) 2/ @2 asymptotic form for z > 0.

positive  decreasing
well exponential

behaved |* not oscillatory, monotonic

* Ai vanishes as x — +oo

*Bi vanishes as x — —oo in forbidden region

damped damped
Cartoon . .
wiggly exponential
V(x)
need to use numerical tabl
to define W (x) in this region
D —

The two asymptotic forms of Ai(z) are not normalized, but
their amplitudes (& phases) can and must be matched.
This links boundary condition at x - +co to boundary
condition at X = —oo.
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5.73 Lecture #6 6-6

NonLecture

1/3
OTHER CASE: a<0—>zz—w[2mla/2} E
lol h

a<0

for this case, we need Bi(z) instead of Ai(z)

Bi(z)— (n‘l/z/Z) |z exp[—§|z|3/2} (forbidden region, z < 0.)

Bi(z)—>n V| z|"* cos[%‘z’m + g} (allowed region, z>0.)

What is so great about V(x) =a x? W (x) seems ugly — need lookup tables, complicated solutions!

But Ai(z) turns out to be key to generalization of quantization
of all (well behaved) V(x)!

These are semi-classical JWKB W (x) functions — They blow up near turning points (i.e. on both
sides). The Ai(z)" s permit matching of JWKB W (x)s across the large gap where W g is invalid,

ill-defined. (JEFFREYS)
WENTZEL
KRAMERS
BRILLOUIN

JWKB provides a way to get W (x) and E_ without solving
differential equations or performing a Fourier Transform.

But actually, the differential equations are easy to solve numerically. The reason
we care about JWKB is that it provides a basis for:

* physical interpretation (semi-classical)

* RKR inversion from E; = V,(R). [Rydberg, Klein, Rees]

* semi-classical quantization.

* the link to classical mechanics is essential for wavepacket pictures.
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5.73 Lecture #6 6-7

(generalize on e** for free particle by letting k = p(x)/i depend explicitly on x (why does this
not violate [x,p]=if ?)

are classical mechanical functions of
——

Y IWKB = |p(X )l_l/ ? eXp|:i l J;(x’)dx /j| No violation because k(x) and p(x)
hide

classical envelope

X, not QM operators.
/2
(x)=[2m(E - V(x)
P [ ] phase factor: choose ¢ to

satisfy boundary conditions

p(x) is pure real (classically allowed) or pure imaginary (classically forbidden). p(x) is not
the Q.M. momentum. It is a classically motivated function of x, which has the form of the
classical mechanical momentum and has the property that the ) = — varies with x in a
reasonable way. p

* |p(x)[" is probability amplitude envelope because

.. 1 . 1 . .
probability o< — so amplitude o< ,/— (v is velocity)
v Vv
exp— [%JX p(x’)dx’} is the generalization of e*" to non-constant V(x).

Mx) h
2 2px)
* gives easily identifiable stationary phase region for many wiggly integrands.

(Both y’s have same A at stationary phase point X, )

*node spacing

Long Nonlecture derivation/motivation of the JWKB splice across the turning
point, even though the JWKB functions are not valid near the turning point.
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5.73 Lecture #6 6-8

Try W(x) = N(x)exp[i%fj p(x) dx'}

plug into Schr. Eq. and get a new differential equation that N(x) must satisfy

d>y 2m

—+ =3 (E- V()

dx 17

d? 1

dTW+7p(x) v=0 * 5

in box
below

Fderived g {N" N (x)N}exp[i%_[ P(X')dx’}

This is a new Schr. Eq. for N(x). Now make an approximation, to be tested later, that N” is
negligible everywhere. This is based on the expectation that a slowly varying V(x) will lead to a
slowly varying N(x).

dy
dx
d2\|’ i ’7” ’ ’ lp ’ 1 1 X ’ ’
d—Xz—z N”+—-Np+—Np'+=| N iENp exp iﬁjc p(x")dx

I
“
Z
St "O
Z
|
|"O
Z
| I—
¢
>
i®)
|—|
"—-
"U
—
><
\./
(@R
><
;I
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5.73 Lecture #6 6-9

so, if we neglect N”, we get for the first term in [ ]
2pN’+p’N=0

if p# 0, then 2p"” { p"N’+ % p "’ p'N} =0

1/2
d(Np ) |:Npl/2 + lp—l/Zp/N:l
dx 2

d ( Np1/2 )
o dx
N (x)p"?(x) = constant

=0

.. N(x) = ep(x)” /2

OK, now we have a form for N(x) that we can use to tell us what conditions must be satisfied
so that N"(x) is negligible everywhere.

N — Cp—l/2

dp_l/2 1 ,dp 12
S e o = 2m(E -
- P p(x)=[2m(E-V(x))]
1/2

dp _ —[2mE Vx) | (—2m)d—V

dx
| dv . dV
=—p (2m ———m —
P (—2m) p~ Ir
dp™"” _ sl d_V
dx 2 dx

d2p” de( 5) Ln| mdVv +p_5/22dzv
2 dx®
——

ignore Updated 8/13/20 8:20 AM
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5 5 _gofdV)?
AN7=e3m2p 9/2(_)
4 dx

But we have made several assumptions about N":

*’N” < Zl_pN’ — +iC_mp_3/2d_V
h h dx
*IN7| <« ﬂN — _iC'_mp_3/2d_V
h h dx
2
” p _ C +3/2
*IN <<ﬁ _ﬁp

all of this is satisfied if

LIEAR
4 | \dx p

Is this the JWKB validity condition? If it is, what does it mean?

<1

Spirit of JWKB: if initial JWKB approximation is not sufficiently accurate, iterate:

p(x) = Yo (x) (ordinary JWKB)
Yo(x)— pp(x)
P1(X) = Y (X) (first order JWKB)

1/2 see ** Eq.
d*yy . P n? &y
Q. + —= =0- x)=| — 0 _
e.8 PRI Yo P (%) v,o(x) dx2 on p. 6-8
1/2 i N, T
(%) = |P1 (x)r exp[i—j py(x")dx } iterative improvement
hJe of accuracy

p;(x) 1s not smaller than p,(x), but it has more nearly correct wiggles in it.

END OF NONLECTURE
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Resume [ecture

-1/2 e , ,
()= [p() exp[igjcpu)dx}

envelope A
d2V adjustable phase shift.
provided that — is negligible
dx
AND
hm dV dA
satisfied by A(x < x) or —<«1
| P d y p
p dx

requlred for N”(x)
to be negligible

Next need to work out connection of Wy 5(X) functions across
region of x where the JWKB approx. breaks down (at turning points!).

o Il at turning point because p(x) >0  Looks BAD!
X

BUT ALL IS NOT LOST — near enough to a turning point
all potentials V(x) look like V(x)=a x! We have Airy
functions that are solutions to the Schrodinger Equation for
this linear potential.

Now our job is to show that asymptotic — AIRY and
JWKB are identical for a small region not too close and
not too far on both sides of each turning point.

THIS PERMITS ACCURATE SPLICING OF
W (x) ACROSS TURNING POINT REGION!

Updated 8/13/20 8:20 AM
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V(X)

s
s

e V(x) = ox
it o>0

\

E ~

approx. linear V(x)

N |

a-AIRY

| JWKB
a X~

Region | E>V(x) classical
Vg~ (=z) ™ sin{%(—z)y2 + 11:/4}

First use Airy s

. _(ax—E)[2ma. |"
to splice across z="—_ PE

I’II JllIlCthll at turning point E= V(a) = o so l:ocx - E} =(x—a)
2ma )"
z=(x— a)( > ) <0 whenx<a Region I/II splice
h using a-Airy.
Region I E <V(x) forbidden region, z > 0
WiI—AIRY - n 5 V4 22

Now consider g for a linear potential and show that it is identical to a-Airy!
12 i,
WV wks ~ Ci|p(x)| exp[i%L p(x")dx :‘

Then both ¢, and c_additive terms could be present

use WKB
p() = [2m(E - v(x))]"?

Updated 8/13/20 8:20 AM
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5.73 Lecture #6 6-13

X < a classical , p is real , WIWKM oscillates
x > a forbidden , p is imaginary ,  yiwks is exponential
pretend V(x) looks linear near x = a (/- JWKB)
y
p(x) = [2m0c(a — X)]l/2 meat
pr(x')dx’ =(2mo)"”? x(a — x')l/2 dx’
2 X
— (zma)l/Z (_5)(61 _ x/)3/2
2
=—2ma)"? g(a - )C)3/2
Region |
W s (0~ [po)[ [ Ae? + Be ™ |
= |p(x)|_1/2 C sin(6 + ¢)
Define the JWKB phase factor, 8(x):
1 ¢x 2moc " 2 32
0=— x)dx" =— —(a—x

Now compare 6(x) to z(x)

v 2mo |3 2
. 3/2
but, earlier, z =(x—a SO=——(—z
( )( 2 j 3 (-2)
- p =(2mor )1/ 3 (-z) 1/2 for exponential factor

|P |— 172 _ (2mo)” /6 (—z )_1/ 4 for pre-exponential factor

Thus, putting all of the pieces together

Updated 8/13/20 8:20 AM
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_ipi1/2 —9

I ~1/6 ~1/4
W — twkB = —(2mour)

(—z) V4C sin %(—1)3/2 — ¢

I
=W,a_AIRY IfC=-2mon)/0n 12
¢=-m/4

w%_ JwkB e€xactly splices onto \Ifall— AIRY

with a|n/4 phase factor|(shifted from what the argument of sine
would have been if one had started the phase integral at x = a

Similar result in Region 11

Wiwks ~ Ae T () + Be )
at X — +oo f(x)—> oo ~B=0
/2
~1/4 ~1/4 2mo |72 2
Wi wB = A(2ma) Mx—a)™ exp{—(7) g(x—a)3/ :|

which is equal to wg_ AIRY IfA = (2m0ch)+1/6 n /2 / 2

. o I 1l 1l
Final step: WywkB <> Wa_ AIRY - VJWKB <> Va_AIRY

require A =—-C/2

perfect match on opposite sides of turning point.

Ai(z) 1s valid in region where W 5 1s invalid.

The logic is complicated, but the analysis assures that matching of W',y x5 to ¥ykp
1s valid and that one gets an extra m/4 phase factor at each turning point in the
classically allowed region. This corresponds to the extra phase accumulated in the
non-classical region so that ¥(+£ ) — 0. The energy levels are lowered below where
they would have been if the wavefunctions in the classically allowed region were
zero at turning points.

Updated 8/13/20 8:20 AM
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