5.73 Lecture #5 5-1

Lecture #5: Continuum Normalization

Last time: Free Wavepacket
encoding of x,, AX, p,, Ap

* use of the Gaussian functional form, G(x; x,,, Ax), to avoid
calculating integrals

* use of stationary phase to encode x, in | g(k) | e1*®

* use g(k) because it is automatic to put in e~ E+/"

For moving and spreading free wavepacket:

Ax 1s time dependent

Ap 1is not (because free wavepacket is not subject to any
force)

Today: Normalization of eigenfunctions which belong to continuously (as opposed to
discretely) variable eigenvalues.

* convenience of ortho-normal basis sets: generalization
for continua

« we often talk about “density of states”, but in order to
do that we need to define what we mean by “state”

* computation of absolute probabilities — cannot depend
on how we choose to define “state”.

1. Identities for & -functions.

2. Vs, Vsp Vs for eigenfunctions that correspond to continuously variable
eigenvalues.

3. finite box with countable number of discrete states taken to the limit L. - oo.
Normalization independent quantity:

# states Y # particles
P(X’e)z( 56 Ipsx j

0 is the argument of the delta-function. So if we integrate over a region of 0
and x, we have the absolute probability, || dodx P(x,0).

4. two examples — “predissociation” rate and smoothly varying spectral density.
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In Quantum Mechanics, there are two very different classes of systems.

* SPATIALLY CONFINED: * K is quantized

* can count states, easy to compute

: n
density of states = _ e

dE

» can normalize to 1= [ wiw.dx
T: classical period of oscCillation L" Vel

1
* # of encounters/sec: ?

L/
* fraction of time in region of length L: % (v, classical velocity, is dependent on x)

* SPATIALLY UNCONFINED: -+ E continuously variable

X dn
g * can t count states, so how to computeﬁ

* can ask what 1s the absolute probability of finding
the system between E, E + dE and x, x + dx

For confined systems, we can express ortho-normalization in terms of Kronecker- &

0.=0 1#] orthogonal

Sij = J‘m \V:Wjdx !
- o0.=1 1=) normalized

W has dimension of 1,12

0;; has dimension of pure number. (Kronecker-9)

For unconfined systems, we are going to ortho-normalize states to Dirac & -
functions

In order to do this we need to know better what a § - function is and what some
of its mathematical properties are.

One of several equivalent definitions of a d-function:
1 o
O(x—x")=0(x,x")= —j e ) dy,
2n
What is it good for?
, o, <'|:|Iihifts a function evaluated at x to
J S(x,x MW (x) dx=y(x"). he same function evaluated at x’.

S(x,x’) has dimension of 1/x. (Dirac-0 function)
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Some useful d—function identities:

We do this so that we will be able to transform between 8k, dp, and SE
(where E = f(k)) delta-function normalization schemes.

1. 8(ax,ax’) = lS(X,X') e.g.,0(p—p’)= S(h(k —k')) = %5(1{ —k’)

[al A
dimension of p—!
dimension of 1/k

nonlecture proof of #1 above

1

S(ax,ax’) = —J o u(@ax—ax’) 4.0 change variables
27
vV —au
dv=adu
S(ax,ax’) _ 11 ey = 1E‘)(x,x’)
2T a a

but, since d(ax,ax”) = 8(ax —ax’)=d(ax’— ax) = 6([—a](x - x’))

(0 is an even function), 8(ax,ax’)=ﬁ8(x,x’)
a

dg(x.) .
2 d(gw) =% = 8ox) Py e
i ——= =0
e — dx

expand g(x) in the region near each 0 of g(x),

i.e., x near x; g(x) = dg (x =)

X=X

If there is only 1 zero, then identity #1 above gives the
required result. It is clear that d(g(x)) will only be nonzero
when g(x) = 0. Otherwise we need to carry out the sum in
1dentity #2.
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g(x) = (x —a)(x — b) has zeroes at x =a and x = b.

dg d
a=%[x —x(a+b)+ab} 9% —(a+b)
dg =a-b dg =b-a
dx o dx o
g(x)
S(e() =3 5(x.x,) (zeroes of g(x))

a_

1 b‘[5(x,a)+6(x,b)]

Other examples:
5(x2 —a2) ‘ ‘ [6(x a)+6(x— a)]
a

5(x1/2 1’2) 2a"%8(x—a) (a>0)

See Merzbacher, Quantum Mechanics, 3'4 Edition, pages 630-632.
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EXAMPLES

A. g(x) = (x—a)(x—b) This has zeroes at x = a, and x = b.
1

= Fbl [6(x,a) + 6(x, b)].

You should show that 8(g(x))
B 6(E1/2 EII/Z)
g(E)=E" —E’”  has one zero at E = E’, expand g(E) about E = E’, thus for E near E’
g(E)+ %E"]’Z(E -E.

you should show that §( E"?,E"*)=2|E""”|8(E,E")

12
This is useful because k o E'* S(E-E)= ( )j [8(k — k") +8(k + k”)] for a free particle

2h*(E’-V,

2

or 3(kp(x)—ky (x))= (—J (E’-V((x)"*8(E-E’)
m

Another property of d-functions: diﬁ(x,x’)
X

d(x,x”) is an even function: /“‘; 1 ,\\

. expect i8()(,)(’) = 9d’(x,x”) to be an odd function:
dx
This is useful because application of diﬁ(x,x’) to f(x) is capable of picking
X

df ,
out — evaluated at x”.
dx

Non-lecture:

Use definition of derivative to prove that
J:Z SI(X,X,)f(x)dx = _f'(x/)

iS(x,x’) lim [S(x +e,x")— 5(x,x’)]
dx

e-0 €

| 3(x+e.x) f(x)dx = f(x' —&)
[ 8 foyax= f(x)

i BTN S =016

e—0 € e—0 €

—/(x)
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There are several useful ways to normalize wavefunctions.

Bound states. Particle is confined in space (with tunneling
tails outside the box). Space normalized. 1 particle
(mostly) in box.

Box normalized Ve (X) (box of length L)

oo

dx W;,Ei Vg = Oji Kronecker - delta

—0Q

OK for bound states, but not continua.

: : . r-1/2
dimension of y g is L /

dimension of §;; or dg g_is 1.
i~
Continua. We need some other form of normalization.

L2 CNE L2 e
e.g. .[ dx(e™) e** = dxe "kK)x
-L/2 —-L/2

ifk=k’wegetL
if k #k’” we expect to get 0 (in limit L — oo)

So we can normalize to a delta function in E, p, or k.
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SE : on dx\p* W ES(E.—E.)
bl OE.E; Y OF E f i
S (E; — E;) has the useful d-function property:

JdES(E _Ej)WSE,E - WSE,Ej

This implies that §(E — E;) has the dimension of 1/E

and that ¥sp  has dimension of L-12E-12

S5p:  pr0o=[2m(E-Ve)" P2 /2m=E-V(x)

I dx‘l’;prpm Vappy, :6(pEi(X)_pE1(X))

6( p— p’) has dimension of 1/p

: : -172 -1/2
pr,pE has dimension of L'"“p

Sk: kE<x>=[2m(E—V<x))} L E-v(
m

W
I dxwgk,kEiWSk,kEj :S(kEi(X)_kEj(X))

8(k —k’) has units of 1/k
L—l/Zk—l/Z

Wy  has units of
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What are all of these normalization schemes good for?

When you make a measurement on a continuum (unbound)
system, you ask

What is the probability of finding a particle between

X, X +dx

and 6,0 +d6 ? 0 can be E, py(x), or ki(x)

The probability is P(x, 8)dxd6

Want P(x,0). Has dimensions Lt 6-1 (as shown for Wy 5. W5 > and Wy )

P(x,0) = \If;se,e W 59,6 (X) !

There is another less abstract way to get this kind of
information. “Discretize the continuum” by adding an infinite
barrier at x = L and taking the limit L—oo. This way we can use
box-normalized states, and actually count the states.

The WKB quantization condition (will be derived in Lecture #7)

gives
dn (Zm)l/2 x,(E) _1/2
Froim ] N dx(E - V(x))
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V(x)

: |
X L
We have a complicated V(x) for x < x, and constant for x > x,,.

In the region where V(x) is constant at V(x,) = V,,.

L
J [E-v()] " dx =[E-V, ] *(L-x,)e< L

Xo
) ) 1
and box normalization causes |\ [o< T
dn *
. L
so we get P(x,E)= 11m(ﬁ Ve YL E (X)
dimension L—yee dimension
LE! dimension L
E-1

2 Schematic Examples
* Bound — free transition probabilities
* Constant spectral density across a dissociation or ionization
limit.
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Bound-Free Transition (predissociation)

N

bound (box normalized

discrete energy levels
V( X) E /"_'_'_J_'_'_’_H gy )

- L

repulsive (continuum of E-
levels,
can’ t really box normalize)

N
>

Xstationary X
phase

At t =0, system is prepared in ¥ (x,0) = ¥, ,,,q(X)

Fermi’ s Golden Rule:

2TC free* ., bound :
Rate =T e = 7” Vs (EDHy; dx‘ Psz (E)

_ dng(E) derive this key quantity by box nornjxalizing

" dE repulsive state and taking gim(%‘iin—EL

Then compute the H integral using two box normalized functions.

Constant spectral density on both sides of a bound/free limit

€to bound levels /\ /\ /\ A ——

w

)

€to continuum

Intensity(w
Téy() ~ smooth function of ®, no
discontinuity at onset of continuum

~_~ V=0
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