
   

    

    
 

 
        

  
 

    
 

       
 

     
    
         

 

 

 

               
 

       
  

          
      

     
   

    

       
 

           
   

 

              
      

        

  

 
 
 

 
 
 

 
 
 

 
 
 

5.73 Lecture #5 5 - 1 

Lecture #5: Continuum Normalization 
Last time: Free Wavepacket 

encoding of x0, ∆x, p0, ∆p 

* use of the Gaussian functional form, G(x; x0, ∆x), to avoid
calculating integrals

* use of stationary phase to encode x0 in |g(k)|eiα(k)

e − iEkt !* use g(k) because it is automatic to put in 

For moving and spreading free wavepacket: 
∆x is time dependent 
∆p is not (because free wavepacket is not subject to any 
force) 

Today: Normalization of eigenfunctions which belong to continuously (as opposed to 
discretely) variable eigenvalues. 

• convenience of ortho-normal basis sets: generalization
for continua

• we often talk about “density of states”, but in order to
do that we need to define what we mean by “state”

• computation of absolute probabilities — cannot depend
on how we choose to define “state”.

1. Identities for δ-functions.

2. ψ�k, ψ�p,ψ�E for eigenfunctions that correspond to continuously variable
eigenvalues.

3. finite box with countable number of discrete states taken to the limit L → ∞.
Normalization independent quantity:

⎛
⎜
⎝
#states ⎛

⎜
⎝
⎞
⎟
⎠ 

#particles ⎞
⎟
⎠

P(x, θ) = 
δθ δx 

θ is the argument of the delta-function. So if we integrate over a region of θ 
and x, we have the absolute probability, ∫∫ d�dx P(x,�). 

4. two examples — “predissociation” rate and smoothly varying spectral density.
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5.73 Lecture #5 5 - 2 
In Quantum Mechanics, there are two very different classes of systems. 

* SPATIALLY CONFINED: • E is quantized
what is ρE

• can count states, easy to compute
dn

good for? density of states = ρEdE 

• can normalize to 1 = ∫
∞ 

ψE
* ψEdx

T:  classical period of oscillation −∞ 

1
* # of encounters/sec: 

T 
L / v 

* fraction of time in region of length L: (v,  classical velocity, is dependent on x)
T 

* SPATIALLY UNCONFINED: • E continuously variable dn
• can’t count states, so how to compute ?

** dE 

• can ask what is the absolute probability of finding
the system between E, E + dE and x, x + dx

For confined systems, we can express ortho-normalization in terms of Kronecker-δ& 

∞ δij = 0 i ≠ j orthogonal 
δ ij = ∫ ψ i

* ψ j dx
−∞ δij = 1 i = j normalized 

ψ has dimension of L–1/2

δij has dimension of pure number. (Kronecker-δ) 

For unconfined systems, we are going to ortho-normalize states to Dirac δ-
functions 

In order to do this we need to know better what a δ--function is and what some 
of its mathematical properties are. 

One of several equivalent definitions of a δ-function: 

− iu( x−δ(x − x′) = δ(x, x′) = 
1 
∫ e x′) du.

2π 
What is it good for? 

shifts a function evaluated at x to 
δ(x,x )′ ψ(x)dx=ψ(x ).′∫ the same function evaluated at x′. 

δ(x, x′)  has dimension of 1/x. (Dirac-δ function) 

revised 8/13/20 8:20 AM 



   

    

  

     
    

  
  

  
  

    

   

  

    

  

  

  

        
         

        
  

 

   

   

 

  	

 

 

5.73 Lecture #5 5 - 3 
Some useful δ-function identities: 

We do this so that we will be able to transform between δk, δp, and δE 
(where E = f(k)) delta-function normalization schemes. 

1. δ(ax,ax′) = 
1 
δ(x,x′) e.g., δ(p − p ′) = δ(!(k − k ′)) = 

1 δ(k − k ′)a ! 
dimension of p–1 

dimension of 1/k 

nonlecture proof of #1 above 

δ(ax,ax′) = 
2
1 
π ∫ e−iu (ax −ax ′)du change variables 

v = au 

dv = a du 
1 1 − iv(x−x′ 1δ(ax,ax′) = ∫ e )dv = δ(x, x′)
2π a a 

but, since δ(ax,ax′) ≡ δ(ax − ax′) = δ(ax′ − ax) = δ([−a](x − x′)) 
1

(δ is an even function), δ(ax,ax′)= δ(x, x′)
|a| 

−1
dg(xi ) δ(x,xi ) provided that 2. δ(g(x)) = ∑ dg(xi )dx!i ≠ 0

dx 
zeros 

of g(x) 

expand g(x) in the region near each 0 of g(x), 

dgi.e.,  x near xi g(x) ≅ (x − xi ).dx x= xi 

If there is only 1 zero, then identity #1 above gives the 
required result. It is clear that δ(g(x)) will only be nonzero 
when g(x) = 0. Otherwise we need to carry out the sum in 
identity #2. 

revised 8/13/20 8:20 AM 



   

    

            

  

 

  

       

  

 

  

5.73 Lecture #5 5 - 4 

g(x) = (x – a)(x – b) has zeroes at x = a and x = b. 

dg d = ⎡x2 − x(a + b) + ab⎦⎤ = 2x − (a + b)⎣dx dx 

dg dg = a − b = b − a 
dx dx 

x=a x=b 

−1 
dg(x )

1δ (g(x)) = ∑ δ (x,x
i ) (zeroes of g(x))dx i 

1 = ⎡⎣δ (x,a) + δ (x,b)⎤⎦a − b 

Other examples: 

δ (x2 − a2 ) = 
1 ⎡⎣δ (x,a) + δ (x − a)⎤⎦2 a 

1/2 − a1./2 1/2δ (x − a)δ (x ) = 2a (a > 0) 

See Merzbacher, Quantum Mechanics, 3rd Edition, pages 630-632. 
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EXAMPLES 

A.   g(x) = (x–a)(x–b)  This has zeroes at x = a, and x = b. 
 

B.    

Non-lecture: 

Use definition of derivative to prove that  

  −∞

∞

∫ ′δ (x, ′x ) f (x)dx = − ′f ( ′x )

  

d
dx

δ(x, ′x ) = lim
ε→0

δ(x + ε, ′x )− δ(x, ′x )⎡⎣ ⎤⎦
ε

∫ δ(x + ε, ′x ) f (x)dx = f ( ′x − ε)

∫ δ(x, ′x ) f (x)dx =    f ( ′x )

∴ lim
ε→0
∫

δ(x + ε, ′x ) − δ(x, ′x )⎡⎣ ⎤⎦
ε

f (x)dx = lim
ε→0

f ( ′x − ε) − f ( ′x )
ε

= − ′f ( ′x )

  

� 

You should show that δ(g(x)) =
1

a − b
δ (x,a) + δ(x, b)[ ].

δ E 1/2, ′E 1/2( )
g(E ) = E 1/2 − ′E 1/2 has one zero at E = ′E , expand g(E) about E = ′E , thus for E near ′E

g(E )± 1
2

′E −1/2 (E − ′E ).

you should show that δ E 1/2, ′E 1/2( ) = 2 ′E 1/2 δ(E , ′E )

This is useful because k ∝E1/2 δ(E − ′E ) = m
2h2 ′E −V0( )

⎛
⎝⎜

⎞
⎠⎟

1/2

[δ(k − ′k )+ δ(k + ′k )] for a free particle

or δ kE (x)− k ′E (x)( ) = 2h2

m
⎛
⎝⎜

⎞
⎠⎟

1/2

( ′E −V (x))1/2δ(E − ′E )

Another  property of δ-functions: d
dx

δ(x, ′x )

δ(x, ′x ) is an even function:

∴  expect d
dx

δ(x, ′x ) ≡ ′δ (x, ′x ) to be an odd function:

This is useful because application of d
dx

δ(x, ′x ) to f (x) is capable of picking

out df
dx

 evaluated at ′x .
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There are several useful ways to normalize wavefunctions. 

Bound states.  Particle is confined in space (with tunneling 
tails outside the box).  Space normalized.  1 particle 
(mostly) in box. 

Continua.  We need some other form of normalization. 

  

� 

Box normalized ψL,E i
(x)

  

� 

−∞

∞

∫ dx ψL, Ei

* ψL, Ej
= δ ij Kronecker - delta

OK for bound states, but not continua. 

  

� 

dimension of ψL,E is L-1/2

dimension of δ ij or δEiEj
 is 1.

So we can normalize to a delta function in E, p, or k. 

  

� 

if k = ′ k  we get L
if k ≠ ′ k  we expect to get 0 (in limit L→∞)

e.g.
−L/2

L/2

∫ dx e ikx( )* e i ′k x =
−L/2

L/2

∫ dxe − i k− ′k( )x

(box of length L) 
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δE : 

δp : 

δk : 

–∞
∞
∫ dxψδE,Ei

* ψδE,E j
≡ δ Ei − Ej( )

δ(Ei – Ej) has the useful δ-function property: 

 This implies that 𝛿(E – Ej) has the dimension of 1/E 

and that 𝜓𝛿E,E has dimension of L–1/2E–1/2  

  

� 

–∞
∞
∫ dxψδp,pEi

* ψδp,pE j
= δ pEi

(x) −pE j
(x)( )

δ p − ′p( )  has dimension of 1/p

ψδp,pE
 has dimension of L-1/2p−1/2

  

� 

pE (x) = 2m E − V(x)( )[ ]1/2

  

� 

–∞
∞
∫ dxψδk ,kEi

* ψδk,k E j
= δ kEi

(x) −kE j
(x)( )

δ k − ′k( )  has units of 1/k

ψδk,k  has units of L-1/2k−1/2

dE δ E − E j( )ψδE ,E = ψδE ,E j∫

PE
2 2m = E −V(x)

 
kE (x) =

2m
!2

E −V(x)( )⎡
⎣⎢

⎤
⎦⎥

1/2 !2kE
2

2m
= E −V(x)
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What are all of these normalization schemes good for? 
 
When you make a measurement on a continuum (unbound) 
system, you ask 

What is the probability of finding a particle between 
 

 x, x + dx 
 and 𝛳, 𝛳 + d𝛳 ?  𝛳 can be E, pE(x), or kE(x) 

The probability is P(x, 𝛳)dxd𝛳 
 
Want P(x, 𝛳).  Has dimensions L–1 𝛳–1 

  

� 

P x,θ( ) = ψδθ ,θ
* (x)ψδθ ,θ(x) !

There is another less abstract way to get this kind of 
information.  “Discretize the continuum” by adding an infinite 
barrier at x = L and taking the limit L→∞.  This way we can use 
box-normalized states, and actually count the states. 
 
The WKB quantization condition (will be derived in Lecture #7) 
gives 

  

� 

dn
dE

=
2m( )1/2

h
dx

x−(E)

x+ (E)

∫ E − V(x)( )−1/ 2

as shown for ψδ,δE ,ψδp ,pE
,  and ψδk ,kE

 ( )
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We have a complicated V(x) for x < x0 and constant for x > x0. 
 
In the region where V(x) is constant at V(x0) = V0. 

  

� 

x0

L

∫ E −V(x)[ ]−1/ 2dx = E −V0[ ]−1/2 L − x0( )∝ L

and box normalization causes |ψ |2∝ 1
L

  

� 

so we get P x, E( ) = lim
L→∞

dnL

dE
⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ ψL,E
* (x)ψ L,E (x)

dimension 
E–1  

dimension 
L–1E–1  

dimension 
L–1  

x 

V(x) 

2 Schematic Examples 
* Bound → free transition probabilities 
* Constant spectral density across a dissociation or ionization 

limit. 

x0 L 
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Bound-Free Transition (predissociation) 

bound (box normalized 
discrete energy levels) 

repulsive (continuum of E-
levels,  
can’t really box normalize) 

stationary 
phase 

At t = 0, system is prepared in Ψ(x,0) = ψbound(x) 

Fermi’s Golden Rule: 

derive this key quantity by box normalizing 
repulsive state and taking  

  

� 

lim
L→∞

1
L

dnL

dE
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 Then compute the Ĥ integral using two box normalized functions.

Constant spectral density on both sides of a bound/free limit 

I (ω)

(ω)

 

Intensity(ω)
ΔE

~ smooth function of ω, no 
discontinuity at onset of continuum 

v = 0

ω

E
→ L

x x

V(x)

  

Rate = Γbound→free =
2π
! ∫ ψδE

free*(E )ĤψL,E
bounddx

2
ρδE (E )

ρδE = dnδE (E )
dE

I(𝜔) 

𝜔 

çto bound levels 

çto continuum 
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