5.73 Lecture 39 39 -1

One Dimensional Lattice: Weak-Coupling Limit

In Lectures 37 and 38 we considered the strong coupling limit, like tunneling in H,"*.
Now we will look at the periodic lattice as a perturbation on the free particle.

See Baym “Lectures on Quantum Mechanics” pages 237-241.

Each atom in a lattice is represented by a 1-D V(x) that could bind an unspecified
number of electronic states:

Now consider a lattice that could consist of two or more different types of atoms.
Periodic structure: repeated for each “unit cell”, of length /.

Consider a finite lattice (N atoms), but impose a periodic (head-to-tail) boundary
condition.

L=Nv¢

A* - A*
For each unit cell: ﬂB *— >

7Y

Vi(x) for i-th unit
cell of length ¢

This 1s an infinitely repeated finite interval: Fourier Series

V(X): i eiKnan

Nn=—o0

2T . :
K= va “reciprocal lattice vector”
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V, is the (possibly complex) Fourier coefficient of the part of V(x) that looks like a
free particle state with wave-vector Kn (momentum 7Kn). Note that Kn is larger
than the largest k (shortest A) free-particle state that can be supported by a lattice
of spacing /.

Kn= n2_n , first Brillouin Zone for :

It
( (

We will see that the lattice is able to exchange momentum in quanta of 7nK with the
free particle. In 3-D, K is a vector.

To solve for the effect of V(x) on a free-particle, we use perturbation theory. The free
particle basis states are weakly perturbed by the periodic lattice.

1. Define the basis set.

2 2 2
HO =P___ hd Lp©
2m 2m dx’
\
V© = constant free particle
0) _ 7-1/2 ke L )
V, =L"e [Normalization: IO dx‘\pg})‘ =L(1/L)= 1}
nk’ ticl L
0y _ 0) one particle per
£ = m T Vgignore

[

Q) _ iKn
2. H - 2 € Vn (0)*
n=-ee Wk'

Matrix elements: H 1(:; = JOL dac| L2677 ] ZelK”an | 120 ]

n

n

1 L - ,
@ _ ix(k+Kn—F’)
Hk’k_z.[o dx En e vV

integral =0 if k+ Kn— k" #0

s k'=k+ Kn selection rule
1
1 - — _
Hk’k - L LZ Vnsk’,kJrKn - 2 Vnsk’,kJrKn
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Must be careful about H',) (relative to H ,Elk)) Return to definition.

(nH _ = —k+Kn+k’)
Hkk’_ J. dxz V Z VSkkKn
e () _ gy
but Hermitian H requires 4, , = H
2 Vnsk',k—Kn = Z v, 6k',k+Kn
true if V = V_*n.

So now that we have the matrix elements of H® and H®, the problem is essentially
solved. All that remains is to plug into perturbation theory and arrange the results.

3. Solve for Vi = Wl((()) + \If(kl)

W(O) L—1/2eikx Y H;EIk)
1) ik’ V 8 k'x
e’ e kn©
W(l) L 1/2 2/ ki — L—1/2 Z/ n k' k-Kn (2, means k/ + k)
k n E(O) _ E(O) n E(O) _ 10
k 4 k ;k—Knl
i(k—Kn)x <_| k'=k—Kn
(1) 1/2 ’ ne . .
Y L =" imposing Kronecker 8-fn
n E (0) E;O)K restriction on e

Now be careful to express \p(l) correctly.

e—z(k Kn)x
Q* _ L 1/2 Z, n
v, " O _ gO
k k—Kn
V=V
n _
—i(k—Kn)x —i(k+Kn)x
(1)* -1/2 ’ -n 1/2 ’ n
Wk - L
(0) (0) _ (0) (0)
" Ek Ek—Kn S Ek Ek+Kn

lreplace n by —n|

But n is just a dummy index and sum is —o to oo,
so we can replace —n by n.
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4. Usey, and y, to compute E, =E” +E'" +E'”.

Rather than use the usual formula for E@, go back to the A® formulation of
perturbation theory.

—WEO+VEY +E® = (y WCHO + VHOly )
Retain terms only through A

(@y*

Vi
v
i V e—l(k+Kn)x h2 d2
:_.[O dx € lkx+/lz (()) (0) ___2+/12Vmelex
-E ., || 2mdxs, m
() )
V ei(k Kn")x H H

k—Kn|
v v
[ 2 21.2 2
EIEO) —\0 1 _h_(_kz)[,} =)0 'k {recall d—zeikx = —kzeikx}
LL 2m 2m dx

1 . . . 2 dZ
EY =\ N j dxe ™Y "™V " +2 terms involving (—h——ﬂ,

2m dx*
and also retain one of the }.” sums (that excludes n=0)

We will get to the A? equation on the next page.

For E ,51): for 1st term, only the m = 0 term in the sum gives a nonzero

integral. For 2 terms, need an n orn’ = 0 term from the sum, but these
are excluded by the )’ sums.

1
(1) _11 11
B =MLV, =AY,

This is basically telling us the location of the bottom of the band relative to
“vacuum”.
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Three ways to get A2 terms, two ways involve the H® term, and one involves the H®
term. The HO term requires n =—-n’

N V4 ,ei(k—Kn’)x
E(Z) 2 dee ikx iKmx n
7\‘ 2 V € 2 E(O) _E(O)

m=—oo n'=—eo Mg k—Kn'

Ve—i(k+Kn)x .

n ikx
+ derO E(O) 70 2 V. e le
k+Kn m

needed to make integral non-zero

1st term O=—k+Km+k—-Kn’, requires m =n’
2nd term O0=-k—Kn+ Km+k, requires m =n

1 2 , 2
E® = 22| [dxx i +|dx X i
k (0) (0) (0) _ 1(0)
L " E Ek—Km " Ek Ek+Km
These are both the same sum, the
[ dx integral gives L. Now we
V2 simplify this.
(2) 2 / n
E =2A Z (0) _ E(O)
P k+Kn
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Combine terms for n and—n and sum 2

n=1

Solve for the energy denominator terms

h* h°Kn
EO_FO® =" k2 _(k+Kn) |=———|Kn+2k]
k k*Kn Zml: ( ) :I Zm
Combine the energy denominators
1 N 1 _4m 1
(0) _ 1(0) 0) _ (0 2 pr2.2 2
E”-E_. E’-E . h K'n-4k
Assemble E'Y

But there are many zeroes in this denominator as n goes from 1 — oo,

Must use degenerate perturbation theory for each small denominator.

Recall, for the 2-level problem

— 9 1/2

E V E +E, E - FE
E =—t—Fr+|| =—=
V E, * 2 2
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V2

n

Must be negative near k=0

E B h2k2 _8_m oo
K 2m O B - K*n* —4k*
Zeroesatkziﬁziz—nnzi
2 2/

because the lowest states are
always pushed to lower
energy.

nm
—, except n=0.

At k = 0, there are no nearby zeroes

dE,| Wk
dk |k:0 m
d’E,| W
dk’? o M

just like free particle!

(minimum at k£ = 0)

(positive curvature)

K . : :
Atk = i;, there are zeroes in the denominator, so there are gaps in the energy:

2|V atk =2

2

2|V,| atk=+K
oV | atk =222
2

What does this look like?
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shift by K

1< Shift by K

always pushing down
to below the parabolic
} curve ne?r k=0

— 1 T

-

15t Brillouin zone
2
h
2
E=V,+| — |k
2m

look at text Baym “Lectures on Quantum Mechanics,” Benjamin
(1981), page 240.

k = % for the lowest energy segment of the E, (k) curve.

We know that all y’s have been generated within — :7 <k< %,

but there are some different values of E for the same £ at each
discontinuity.
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But we want to shift each of the segments by an integer times K to the
left or right so that each shift within the — g <k< g“First Brilouin

Zone”. E
2V,
2V,
Vo
>
-K/2 K2 k

E vs. k diagram. Curvature gives mefr.

3-D diagram — gives much more information. Tells us where to find
transitions allowed as a function of 3-D k vector in “reciprocal lattice” of
lattice vector K.

Scattering of free particle off lattice. Conservation of momentum in the
sense kfinal - kinitial =K.
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