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One Dimensional Lattice:  Weak-Coupling Limit 
In Lectures 37 and 38 we considered the strong coupling limit, like tunneling in H2

+.  
Now we will look at the periodic lattice as a perturbation on the free particle. 
 
See Baym “Lectures on Quantum Mechanics” pages 237-241. 
 
Each atom in a lattice is represented by a 1-D V(x) that could bind an unspecified 
number of electronic states: 
 
Now consider a lattice that could consist of two or more different types of atoms. 
 
Periodic structure:  repeated for each “unit cell”, of length ℓ. 
 
Consider a finite lattice (N atoms), but impose a periodic (head-to-tail) boundary 
condition. 

L = Nℓ"
 
For each unit cell: 

Vi(x) for i-th unit 
cell of length ℓ"

This is an infinitely repeated finite interval:  Fourier Series 

V (x) =
n=−∞

∞
∑ eiKnxVn

K = 2π
ℓ

  “reciprocal lattice vector”

A+ A+ B– 



   

       

        
          

         
 

        
           

 
       

        

   

  

  

   
 

    

 

 
 

  

  
  

   

  

  

   

  
   

  

5.73 Lecture 39 39 - 2 
Vn is the (possibly complex) Fourier coefficient of the part of V(x) that looks like a 
free particle state with wave-vector Kn (momentum #Kn). Note that Kn is larger 
than the largest k (shortest λ) free-particle state that can be supported by a lattice 
of spacing ℓ. 

Kn = n 2π 

ℓ 
, first Brillouin Zone for k: 

π− ≤ k ≤ 
π 

ℓ ℓ 

We will see that the lattice is able to exchange momentum in quanta of #nK with the ! 
free particle. In 3-D, K is a vector. 

To solve for the effect of V(x) on a free-particle, we use perturbation theory. The free 
particle basis states are weakly perturbed by the periodic lattice. 

1. Define the basis set. 

p2 !2 d 2 

H(0) +V (0) = = −
2m 2m dx2 

V (0) 

⎫ 
⎪
⎪
⎬ 
⎪ 
⎪⎭ 

free particle = constant 

= L−1/2 ikx (0) ψ k 
⎡ L (0) 2 

= L(1/ L) = 1⎤⎦⎥ψ k0 

e ∫Normalization: dx⎣⎢ 
!2k 2 

one particle per LEk 
(0) +V (0) = ignore 2m 

∞ 

H(1) iKnV= e2. ∑ n (0)* 
n=−∞ ψ k ′ 

L ⎡ ⎤(1) [L−1/2 −ik x′ ] iKnx ⎥[L−1/2 ikx ]Matrix elements: H = dx e e V e
k k′ ∫ ⎢∑ n0 ⎣ n ⎦ 

(1) 1 L ix(k+Kn−k′)VH = dx∑ e
k k′ ∫ nL 0 

n 

integral = 0 if k + Kn − k′ ≠ 0 
∴ k′ = k + Kn selection rule 

H (1) = 
1 

L∑ V δ = ∑ V δ
k k′ n k′,k+Kn n k′,k+Kn L n n 
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5.73 Lecture 39 39 - 3 
(1) (1) Must be careful about Hkk′ (relative to Hk k′ ). Return to definition. 

(1) 1 L ix(− k+Kn+k′)VHkk′ = ∫ dx∑ e n = ∑ Vn δk ',k− Kn0L n n 
(1) (1)* but Hermitian H requires Hk = Hk′ k k′ 

∴∑ V δk = ∑ V *δkn ',k− Kn n ',k+ Kn 
n n 

true if V = * . n V− n 
So now that we have the matrix elements of H(0) and H(1), the problem is essentially 
solved. All that remains is to plug into perturbation theory and arrange the results. 

(0) (1)=3. Solve for ψk ψk + ψ k 

(0) = L−1/2 ikx ψ (0) H(1) ψ
k

e k′ k ,k′ 

(1) ik x′ ik x H e V δ e
(1) = L−1/2 kk′ = L−1/2 n k′,k−Kn ( )ψ Σ′ Σ′ Σ′ means k′ ≠ k
k (0) − E (0) (0) − E (0) n nE E

k k′ k k−Kn 

i(k−Kn )x k′ = k − Kn V e(1) = L−1/2 nψ Σ′ imposing Kronecker δ-fn
k (0) − E (0) n E restriction on eik'x 

k k−Kn 
(1)* Now be careful to express ψk correctly. 

* −i(k−Kn )xV e(1)* = L−1/2 nψ Σ′ 
k (0) − E (0) n E

k k−Kn 

V
n 
* = V

−n 

−i(k−Kn )x −i(k+Kn )xV e V e(1)* = L−1/2 −n = L−1/2 nψ Σ′ Σ′ 
k n E (0) − E (0) −n E (0) − E (0) 

k k−Kn k k+Kn 
replace n by –n 

But n is just a dummy index and sum is –∞ to ∞, 
so we can replace –n by n. 
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5.73 Lecture 39 39 - 4 
* (0) (1) (2) 4. Use ψ k  and ψk  to compute Ek = E k + E k + E k . 

Rather than use the usual formula for E(2), go back to the λn formulation of 
perturbation theory. 

(0) + λ1E (1) + λ2E (2) λ0H(0) + λ1H(1) E = λ0E = 
k k k k 

ψ
k 

ψ
k 

Retain terms only through λ2 

(1)* 
(0)* 

ψ kψ k

e−i(k+Kn)x⎡1 L e−ikx + λ Σ′ Vn ⎤ ⎡ !2 d2 

eiKmx 
⎤

Ek = 
L 
∫0 dx ⎢ n Ek

(0) − Ek
(0) 
+Kn 

⎥ ⎢− 
2m dx2 + λ Σ 

m 
Vm ⎥

⎣ ⎦ ⎣ ⎦ 
H(0) H(1) 

ei(k−Kn′)x⎡ ⎤ 
× eikx + λ Σ′ Vn′ ⎢ (0) − Ek

(0)
−Kn

⎥Ek ′ ⎦⎣ 
(0) 

n′ 
ψ k (1) ψ k 

⎡ !2 ⎤ ⎡ ⎤
Ek 

(0) = λ0 1 

⎣⎢
− (−k2 )L

⎦⎥ 
= λ0 !

2k2 

⎢recall	 d
2 

ikx = −k2eikx ⎥L 2m 2m ⎣ dx2 
e 

⎦ 

Ek 

(1) = λ1 1 
⎢
⎡
∫ dx e− ikx ∑ eiKmxVmeikx +2 terms involving ⎝⎜

⎛ 
− 
!2 d2 

⎠⎟
⎞ 
⎥
⎤ 
,

L ⎣ m 2m dx2 ⎦ 
and also retain one of the ∑′ sums (that excludes n = 0) 
We will get to the λ! equation on the next page. 
For ""($): for 1st term, only the m = 0 term in the sum gives a nonzero 
integral. For 2nd terms, need an # or #& = 0 term from the sum, but these 
are excluded by the ∑′ sums. 

(1) Ek 
= λ1 1 

L 
LV0 

= λ1V0 

This is basically telling us the location of the bottom of the band relative to 
“vacuum”. 
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5.73 Lecture 39 39 - 5 
Three ways to get λ2 terms, two ways involve the H(1) term, and one involves the H(0) 

term. The H(0) term requires n = –n′.. 
∞ ∞ i(k−Kn′)x

(2) 1 λ2 
⎡ − ikx iKmx Vn′eEk 

= ⎢∫dx e ∑ Vme Σ′ (0) − E (0) L ⎣ m=−∞ n′=−∞ Ek k−Kn′ 

− i(k+Kn)xe ⎛ ⎞ ⎤′ Vn iKm ikx + ∫dx n 
Σ
≠0 (0) − E (0) ⎝⎜∑ Vme ⎠⎟ 

e ⎥
E m ⎥k k+Kn ⎦ 

needed to make integral non-zero 

   

       

         
     

   

   
       

  

		

  

     
     

1st term 0 = –k + Km + k − Kn′, requires m = n′ 
2nd term 0 = –k − Kn + Km + k, requires m = n 

⎡ 2 2 ⎤1 V V(2) λ2 ′ m ′ mEk = ⎢∫ dx Σ (0) − Ek 
(0) 
−Km 

+∫ dx Σ (0) − Ek 
(0) 
+Km 

⎥ 
⎣ m m ⎦L ⎢ Ek Ek ⎥ 

These are both the same sum, the 
∫ dx integral gives L. Now we 

∞ 2 simplify this. V(2) n= 2λ2Ek Σ′ (0) − Ek 
(0) 
+Kn n=– ∞ Ek 
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5.73 Lecture 39 39 - 6 

Combine terms for n and − n and sum ∑
∞ 

n=1 

Solve for the energy denominator terms 

(0) − E (0) !2 !2Kn E = ⎡⎣k2 −(k ± Kn)2 ⎤⎦ = − [Kn ± 2k]k k±Kn 2m 2m
Combine the energy denominators 

1 1 4m 1+ =(0) − E (0) (0) − E (0) !2 K 2 2 − 4k2E E nk k+Kn k k−Kn 

Assemble Ek 

(2) 

∞ 2 

Ek 

(2) = 
−8m ∑ 

Vn 

!2 K 2 2 − 4k2 . n=1 n 

But there are many zeroes in this denominator as n goes from 1 → ∞. 

Must use degenerate perturbation theory for each small denominator. 

Recall, for the 2-level problem 

⎞ 
⎟
⎠⎟ 

2 

+ V 2 

⎤ 
⎥ 
⎥ 
⎥⎦ 

1/2 

⎯⎯→ E = 
E

k 
+ E

k′ 
± 2 

± 
⎡ 
⎢ 
⎢ 
⎢⎣ 

⎛ 
⎜
⎝⎜ 

⎛ ⎞ E − EE V 
k k′k⎜ 

⎜⎝ 
⎟ 
⎟⎠ 2V E

k′ 
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5.73 Lecture 39 39 - 7 

∞ 2!2k 2 8m Vn 
Must be negative near k = 0 

Ek = +V0 − ∑ because the lowest states are 
!2 K 2 2 − 4k 22m n=1 n always pushed to lower 

energy. 
Kn 2π

zeroes at k = ± = ± n = ± 
nπ 

,  except n = 0.
2 2ℓ ℓ 

At k = 0, there are no nearby zeroes 

!2k = (minimum at k = 0)
dEk 

dk m
k=0 

!2d 2 Ek = (positive curvature) 
mdk 2 

k=0 

just like free particle! 

K
At k = ± , there are zeroes in the denominator, so there are gaps in the energy: 

2 
K

2 V1  at k = ± 
2 

2 V2  at k = ± K 

! 
nK

2 V  at k = ± n 2 

What does this look like? 
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5.73 Lecture 39 39 - 8 

shift by K 
shift by K 

always pushing down 
to below the parabolic 
curve near k = 0 

1st Brillouin zone 

2 V2 

2 V1 

V0 

Ek 

–K –K/2 K/2 K k 

   

       

         
  

  
  

   
  

   

   

  

  

  
 

       
 

        
         

 
 

k 

⎛ !2 ⎞
E = V0 + 

⎠⎟ 
k2 

⎝⎜ 2m 

look at text Baym “Lectures on Quantum Mechanics,” Benjamin 
(1981), page 240. 

! = 
!
ℓ 

for the lowest energy segment of the ##(!) curve. 

We know that all &’s have been generated within − $
!
ℓ ≤ ! ≤ $

!
ℓ, 

but there are some different values of E for the same k at each 
discontinuity. 
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5.73 Lecture 39 39 - 9 
But we want to shift each of the segments by an integer times K to the 
left or right so that each shift within the − !

" 

!
" ≤ # ≤ “First Brilouin 

Zone”. E 

2V3 

2V2 

2V1 

V0 

–K/2 K/2 k 

E vs. k diagram. Curvature gives meff. 

3-D diagram — gives much more information. Tells us where to find
" transitions allowed as a function of 3-D !⃗ vector in “reciprocal lattice” of 

lattice vector $"⃗ . 

Scattering of free particle off lattice. Conservation of momentum in the
" " " sense !⃗final − !⃗initial = $⃗. 
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