
 

 

  
 
 
 
 
       

 

 

        
  

    

  

           
   

    
 

   
   

  
    

   
  

  
  

  
 

5.73 Lecture #37 37 - 1 
Infinite 1-D Lattice I 

CTDL, pages 1156-1168 

LAST TIME: 

hole (!+) vs. e– configurations ℓN ↔ ℓ2(2ℓ+1) – N [e.g. f 13↔f 1] for N > 2ℓ + 1 
e2/rij unchanged 
ζ(NLS) ↔ –ζ(NLS) [ζnℓ unchanged] 

Hund’s 3rd Rule (Lowest L-S term of ℓN only) 
N<2ℓ+1 EMIN for J = L − S regular 

(2ℓ+1)+1SN=2ℓ+1 2ℓ+1 S state: no fine structure 
J = 

2 

N>2ℓ+1 EMIN for J = L + S inverted 

Zeeman Effect 
Wigner-Eckart Theorem used to define gJ equal spacings 

EZeeman = –µ0MJgJBZ 
gJ as L,S,J diagnostic 

( ( ) − L(L +1)J J + 1) + S S + 1 
= 1 +gJ 

2J (J + 1) 
Confirm by HZeeman in Slater determinantal basis 

TODAY: 

1. H! as example of localization, delocalization, tunneling 
2. ∞ dimension secular equation for simplified 1-D lattice 

3. eigenvectors by equal probability trick 
4. restrict k to |#| < %/ℓ : 1st Brillouin Zone 

5. )(#) = )% − 2/ cos #ℓ (are these all of the allowed states?) 
6. Bloch functions 3&(4) = 5'&(6&(4) 
7. wavepackets, motion, group velocity 

next 8. transitions: energy bands and intensity profiles 
lecture 

9. conductivity 
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5.73 Lecture #37 37 - 2 

Start with H2
+, a lattice with only 2 equivalent sites. 

qualitative picture: atomic energy levels 
tunneling between identical localized states: 

is slow behind a high barrier (small splitting) 
is fast behind a low barrier (large splitting) 

levels → bands, of width related to tunneling rate 

− R 2 + R 2 

En+1 
(0) 

En 
(0) 

R >> a0 and doubly degenerate
Elowest = − 

ℜ 

12 

H2 
+ x 

2 atoms → 2 states: small 
tunneling splitting 

large tunneling splitting 

For exact degeneracy between left-well and right-well localized states, can choose 
any linear combination 

(0) (0) Localized basis set: ψ localized = ψ left or ψ right 

= 2−1/2 (0) Delocalized basis set ψ delocalized 
⎡⎣ψ left 

⎤⎦
(0) ± ψ right 
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5.73 Lecture #37 37 - 3 
If initially in a localized state, tunneling rate depends on 

* height (relative to En 
(0) ) of barrier 

* width of barrier 
* size of overlap between exponential tails of ψ left 

(0) (0)  and ψ right 

clear that tunneling rate (i.e. reciprocal of adjacent level-splitting) increases 
* as n↑ at constant R (internuclear separation) 
* as R↓ at constant n 
E 

0 

double degeneracy 
at R →∞ 

∆ is 

E1

R 

Δ 

tunneling splitting — gets larger as R↓. Less localization causes
∆" tunneling rate to increase. The tunneling rate is # 

(which has units of 
1/t). 

N ATOMS ALONG A STRAIGHT LINE 

¨widelevel 
spacings: 

¨ N atoms, N states 
narrow 

Each electronic state of the isolated atom becomes a band of states for 
∞-atom lattice. Energy width of each band increases as the principal quantum 
number increases because atomic states require more room: 〈r〉n ∝ a0n2. 
Tunneling gets faster. Greater sensitivity to the world outside a single atom. 
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5.73 Lecture #37 37 - 4 
Simplified model for ∞ 1–Dimensional Lattice: basis for qualitative insights and 

early-time predictions. 

1. Each ion, called q, has one bound state, |νq〉) 
at E0 = 〈νq|H|νq〉  [diagonal element of H] (actually 2 spin-orbitals) 

2. Only permit orbitals on adjacent ions to interact [important simplifying 
assumption], like Hückel theory. 

3. symmetry: all ions are equally spaced, xq+1 – xq = ℓ, and all adjacent-orbital 
interaction matrix elements are identical 

〈νq|H|νq+1〉≡ –A [off-diagonal elements of H] 
[reasons for – A sign choice later.]

(|A| must increase as ℓ → 0) 

⎛ E0 − A ⎞
0⎜ 

⎜ 
⎜ 
⎜ 
⎜
⎜⎝ 

− A ! ! 
tridiagonal infinite

! E 0 −Aso H = matrix 

0 −A ! 

! 

⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟⎠ 
! 

Since this is infinite, we need a trick to diagonalize it. 

try a general variational function 

ν superposition of AO’sϕ = ∑
∞ 

cq q 
each localized at each site q= −∞ 

we get requirements on cq by plugging this into the Schrödinger 
equation 

H ϕ = E ϕ 

left multiply by νq 
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5.73 Lecture #37 37 - 5 

qth 

position 

LHS (0…1…0) picks out qth row of H 

v H ϕ = E v ϕ q q 

(0…− A,E0 ,− A…0) ⎛ ⎞c−∞ 

∣�〉 →

⎜ 
⎜ 
⎜ 
⎜
⎝ 

⎟ 
⎟ 
⎟ 
⎟
⎠ 

⟨vq∣ H ! 
! 

c+∞ 

= − Ac + E0c − Ac q−1 q q+1 

RHS E[ ν ϕ ] = E[c ]q q 

comes from the 
assumed simple0 = cq [E0 − E ] − cq −1A − cq +1 A 
form of the model 

TRICK: probability of finding e– on each lattice site should be the same 
for all sites (complex amplitudes might differ but the 
probabilities will be constant) 

2 
c = 1 for all qlet cq = eikqℓ" 

q 

This choice of cq is a good guess that is consistent with expectation of 
equal probabilities on each lattice site. 

ℓ is the distance between adjacent atoms 
q is an integer 
qℓ is the coordinate of the q-th site: looks like an eikx plane wave 
k is of dimension ℓ–1 

This problem reduces to finding the allowed values of k. 

The periodicity of the lattice provides the important result, that if k is replaced by k′, 

where k′ = k + 
2π , the wavefunction does not change (translational symmetry). 
ℓ 
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5.73 Lecture #37 37 - 6 

⎛ 2π ⎞
ikqℓ+i ℓik ′qℓ ⎝⎜ ℓ ⎠⎟ ikqℓ i2πqc′ = e = e = e e = c q " q 

=1 

Since all distinguishable |"⟩ may be generated by choosing the value of 
k in the interval − !

ℓ 

!
ℓ ≤ & < , restrict k to this range; this range of k is 

called the “First Brillouin zone”. 

Return to question about what happens when E is not in the range allowed by 
this range of k. Then E is not in the 1st Brillouin Zone. Next lecture [get another 
part of the band structure using qualitative perturbation theory rather than a 
matrix diagonalization calculation]. 

Plug cq = eikqℓ into Schrödinger Equation 

0 = cq ( E0 − E) − A(cq+1 + cq−1 ) 
ikqℓ ( ik(q+1)ℓ + eik(q−1)ℓ )0 = e ( E0 − E) − A e 

divide by eikqℓ and rearrange 

This is the condition on
E = E0 − A[eikℓ + e− ikℓ ] E,k that must be satisfied"$#$% for all eigenfunctions of 

2cos kℓ the Schrödinger equation! 

E = E0 – 2A cos kℓ" 
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5.73 Lecture #37 37 - 7 

E varies continuously over finite interval E0 ± 2A 

E(k) 

E0 + 2A 
E0 — 

E0 − 2A 

–π/ℓ" 0 ++π/ℓ" k 

The choice ν H ν = − A leads to a minimum E at k = 0. q q+1 

Are these all of the allowed energy levels that arise from a single orbital at 
each lattice site? Apparently not — see Lecture #38. They are only half of the 
states. [One orbital per atom → two spin-orbitals per atom. 
Antisymmetrization gives another separate band.] like singlet vs. triplet. 

We could repeat the calculation looking for a higher energy state at each site. 
Would get a broader band centered at higher energy. 
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5.73 Lecture #37 37 - 8 

Take a closer look at the spatial form of �k(x) ≣ ⟨x∣�k〉 

+∞ 
ikqℓ ν treated as sum overϕk (x) = x ϕk = ∑ e 
" 
x q#$ localized functionsq=−∞ 
νq(x) 

The goal is to replace the infinite sum by a single term: 

This is called 
a Bloch function!#"#$ 
e ikxuk (x)show that: ϕk (x) ~ 

plane wave periodicity 
(Free particle) of lattice 

∞ 

Begin by requiring that ϕk (x) = ∑ eikqℓνq (x) 
q=−∞

Translational symmetry imposes a relationship 
between νq(x) and ν0(x) 

each νq(x) is localized at site q. 
This is a single function rather than a 
sum of separate localized functions. 

shift x by 
–qℓ to get 
from site q 

to site 0 

ν (x ) = ν0 
(x − qℓ) 

ϕk 
(x ) = ∑

∞

e (x − qℓ) 
q 

ikqℓν0 
q=−∞ 

ikqℓ ν0ϕ (x + ℓ) = e (x + ℓ − qℓ)k ∑
∞

"$$#$$%q=−∞ 
=ν0 

( x−(q−1)ℓ) 

ikℓ ik(q−1)ℓν0= e ∑
∞

e (x − (q − 1)ℓ) 
q=−∞ 
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5.73 Lecture #37 37 - 9 
Re-index the sum (replace q–1 by q) get original function multiplied by eikℓ" 

�k(x + ℓ) = eikℓ�k(x) 
translation 

by ℓ 

This form of !! has all of the symmetry properties we will need. This 
form is sufficient to satisfy the symmetry requirements (boundary 
conditions). This means, instead of writing "!($) as sum over atom-
localized &"($)’s, it is possible to write "!($) for all k as a product of 2 
factors. 

this has the properties of 

ϕ k(x) = eikxuk (x) the above sum form, but is 
more general 

1st factor conveys translational symmetry of a plane wave with wavevector k, 2nd 

factor builds in translational symmetry of a lattice with spacing ℓ. This is a more 
general expression that incorporates all of the properties of the original definition of 
ϕk(x) as a sum over localized orbitals. 

uk 
(x + ℓ) = uk (x) 

ikx ikℓ ikℓ ikx 
note that ϕk 

(x + ℓ) = e e uk 
(x + ℓ) = e ⎡⎣e uk (x)⎤⎦ 

ikℓϕk = e (x) 
as required. 

– Note also that |!k(x + nℓ)|2 = |!k(x)|
2 implies that, as required, the e has 

equal probability of being found on each site. 
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