5.73 Lecture #37 37 -1

Infinite 1-D Lattice I
CTDL, pages 1156-1168

LAST TIME:
hole (7i") vs. e configurations N PN [e.g. fPof! for N>20 + 1
ez/rl-,- unchanged
C(NLS) <> —{(NLS) [£,,, unchanged]

Hund’s 3rd Rule (Lowest L-S term of ¢~ only)

N<2/+1 Ey forJ =|L—S] regular
N=2/+1 Mg S state: no fine structure
J=="
2
N>2/+1 Ey forJ=L+S inverted

Zeeman Effect
Wigner-Eckart Theorem used to define g;

FZeeman = —y M g,B,

equal spacings

g; as L,S,J diagnostic

JT+1)+8(s+1)- L(L+1)

2J(J +1)
Confirm by HZ%eman jn Slater determinantal basis

gy =1+

TODAY:

H, as example of localization, delocalization, tunneling
oo dimension secular equation for simplified 1-D lattice
eigenvectors by equal probability trick

restrict k to |k| < m/¢ : 15t Brillouin Zone

E(k) = Eqg — 2A cos kf (are these all of the allowed states?)
Bloch functions yi(x) = e**u; (x)

wavepackets, motion, group velocity
next

transitions: energy bands and intensity profiles
lecture

© P N o ok -

conductivity
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Start with H;, a lattice with only 2 equivalent sites.

qualitative picture:  atomic energy levels
tunneling between identical localized states:
1s slow behind a high barrier (small splitting)
is fast behind a low barrier (large splitting)
levels — bands, of width related to tunneling rate

H; ~-R/2 +R/[2 X

large tunneling splitting

2 atoms — 2 states: small
tunneling splitting

R>>a, : IRE i 'and doubly degenerate

For exact degeneracy between left-well and right-well localized states, can choose

any linear combination
(0) (0)

Localized basis set: W, .. =W, ory

. . A2 (0) (0)
Delocalized basis sety . =2 [‘P + wﬁght]

left —
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If initially in a localized state, tunneling rate depends on
* height (relative to £”) of barrier
* width of barrier
* size of overlap between exponential tails of 3} and Wi,

clear that tunneling rate (i.e. reciprocal of adjacent level-splitting) increases
* as nT at constant R (internuclear separation)
* as Rl at constant n

Ea
Ob - - oo

E,
IA double degeneracy
> at R >0

A 1s tunneling splitting — gets larger as Rl. Less localization causes
tunneling rate to increase. The tunneling rate is ATE(WhiCh has units of

1/t).

N ATOMS ALONG A STRAIGHT LINE

[ | | |
v [l JNE= = ==
spacings: ’ . . . "N atoms, N states

Each electronic state of the isolated atom becomes a band of states for

co—atom lattice. Energy width of each band increases as the principal quantum
number increases because atomic states require more room: (r), < a,nz.
Tunneling gets faster. Greater sensitivity to the world outside a single atom.
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Simplified model for - 1-Dimensional Lattice: basis for qualitative insights and
early-time predictions.

1. Each ion, called g, has one bound state, |v,)
at K, = (v H|v,) [diagonal element of H] (actually 2 spin-orbitals)

2. Only permit orbitals on adjacent ions to interact [important simplifying
assumption], like Hiickel theory.

3. symmetry: all ions are equally spaced, x.,; —x, = ¢, and all adjacent-orbital
interaction matrix elements are identical

(VHIV ) =—A [off-diagonal elements of H]

' [reasons for — A sign choice later.]
(JA] must increase as ¢ — 0)

E, -A 0
A tridiagonal infinite
so H= . Eo -A matrix
0O *

Since this is infinite, we need a trick to diagonalize it.

try a general variational function

|(p> = 2 Cq| Vq> superposition of AO’ s

g=—oco each localized at each site

we get requirements on ¢, by plugging this into the Schrédinger
equation

Hp)= Elp)
left multiply by <vq|
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qth
position

LHS (0...1...0) icks out g** row of H

l

<vq|H|(p> = E<vq‘(p>

(0..-4.E,~4..0)

<vq| H

) — —Acq_1 +Ec, — Acc]+1

rus  Hlv.le)] = He,] C...

comes from the

O = Cq [EO —_ E] — Cq—lA —_ Cq+1A assumed simple

form of the model

TRICK: probability of finding e~ on each lattice site should be the same
for all sites (complex amplitudes might differ but the
probabilities will be constant)

c| =1 forallg

let |c. = etkd! .

q

This choice of ¢, is a good guess that is consistent with expectation of
equal probabilities on each lattice site.

¢/ 1s the distance between adjacent atoms

g 1s an integer

q/ is the coordinate of the g-th site: looks like an e** plane wave
k is of dimension /!

‘This problem reduces to finding the allowed values of k. ‘

The periodicity of the lattice provides the important result, that if & is replaced by £/,

where k' =k+ 2% , the wavefunction does not change (translational symmetry).
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’ ik’ gl __

21
(ikq€+i—€) . .
tkg? _i2m
Cq —e / q q

e =e e C
—_— q
=1
Since all distinguishable |¢@) may be generated by choosing the value of

k in the interval —% <k< %, restrict k to this range; this range of k& is
called the “First Brillouin zone”.

Return to question about what happens when E is not in the range allowed by
this range of k. Then E is not in the 1st Brillouin Zone. Next lecture [get another
part of the band structure using qualitative perturbation theory rather than a
matrix diagonalization calculation].

" into Schrédinger Equation

0=c (E,—E)- A(cq+1 +cq_1)

Plug c,=e

0= ! ( Eo . E) . A(eik(qﬂ)f n eik(q—l)é)

divide by e’ and rearrange

il _ikt This is the condition on

EF=F — A e e E,k that must be satisfied
0 - ~ v for all eigenfunctions of

2cosk/l the Schrodinger equation!

E=E,-2A cos k/
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E varies continuously over finite interval E;+2A

Lk, +2A

—t//¢ 0 ‘ R

The choice <vq |H| vq+1> =—A leads to a minimum E at £k =0.

Are these all of the allowed energy levels that arise from a single orbital at
each lattice site? Apparently not — see Lecture #38. They are only half of the
states. [One orbital per atom — two spin-orbitals per atom.
Antisymmetrization gives another separate band.] like singlet vs. triplet.

We could repeat the calculation looking for a higher energy state at each site.
Would get a broader band centered at higher energy.
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Take a closer look at the spatial form of ¢, (x) = (x| ¢,)

+00 .
?r (x)= <X‘(Pk> = 2 elkqg <x‘vq> treated as sum over
Hf_J

localized functions

q:—oo
v, ()
The goal is to replace the infinite sum by a single term:
This is called
a Bloch function
o
r \

show that: ikx
¢, (x)~ e u (x)
plane wave | periodif:ity
(Free particle) of lattice

Begin by requiring that ¢, (x)= e"'v (x)

q:—OO

Translational symmetry imposes a relationship
between v (x) and v(x)

each v (x) 1s localized at site q.

This is a single function rather than a
sum of separate localized functions.

vq(x) =V, (x — qé)

shift x by
N ikqt —ql to get
(pk(x) = 2 e™ VolX — q{) from site g
= to site 0
¢ (x+/0)= D, e VO(X +0— qé)
q:_m —v,(x~(g-1)1)
RN k(g1
=e e vo(x—(q—l)ﬁ)
— 4
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Re-index the sum (replace q—1 by q) get original function multiplied by e’

+ () = e (x)
Ppx € Pr\X
translation
by ¢

This form of ¢, has all of the symmetry properties we will need. This
form is sufficient to satisfy the symmetry requirements (boundary
conditions). This means, instead of writing ¢,(x) as sum over atom-
localized v, (x)’s, 1t is possible to write @, (x) for all k£ as a product of 2

factors.
this has the properties of

qD k(.’Xj) = e ik uk (x) the above sum form, but is

more general

1% factor conveys translational symmetry of a plane wave with wavevector &, 9"
factor builds in translational symmetry of a lattice with spacing /. This is a more
general expression that incorporates all of the properties of the original definition of
¢,(x) as a sum over localized orbitals.

uk(x+€)= u, (x)
note that (Pk (x_|_ 6) — eikxeikguk (x_l_ g) — eikﬁ [eikxuk(x)]

— eikE(Pk(x)

as required.

Note also that |p, (x + nﬁ)l2 = |<pk(x)|2 implies that, as required, the e has
equal probability of being found on each site.
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