
 

 
 

     
  

    

 
     

  

  
 
  
   
 
  

  
 

 

 

 
 

 

5.73 Lecture #36 36 - 1 
Zeeman Effect 

Read CTDL, pp. 1156-1178, preparation for 1-D solids 

LAST TIME: 
* computational tricks and inter-relationships among atomic and 

molecular constants 
HSO* = ζ(N,L,S)L·S → a different ζ(N,L,S) constant for each L–S 
state in configuration N 

or, from HSO = ∑a(ri )ℓ isi → one ζnℓ parameter valid for all 
i 

diagonal and off-diagonal intra-configurational matrix elements 

ζ(N,L,S) a fit parameter 
ζnℓ an orbital integral 

micro→macro forms of operators 

TODAY: 

1. electrons↔holes 
shortcuts for e2/rij and HSO 

2. Hund’s 3rd Rule: the lowest L–S–J level of an electronic 
configuration 

3. Zeeman effect. Landé g-factor via Wigner-Eckart Theorem. 
Another way to evaluate reduced matrix elements. 

4. HZeeman in Slater determinantal basis set. 
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so get the same result for e2/rij by e or h+ algebra.  All Fk, Gk
Slater-Condon parameters are > 0.

What about p5d1 vs. p1d1?  Is the level order inverted? Hund’s 1st

and 2nd rules predict the same lowest state in p5d as in (ph+)1 d1.

What about e vs. h+ for HSO? 

HSO = ζ N , L,S( )L ⋅S = a(ri )
i
∑ ℓ isi

5.73 Lecture #36 36 - 2 
1. electrons (e–)⟷holes (h+) shortcuts 

subshell nℓN 

½ full s p d f 

#e– 1 3 5 7 

for p5 do we need to consider 5e– or one h+? 

p5 2P ML = 1, MS = 1/2 ||1α1β0α0β–1α|| 

(ph+)1 2P ML = 1, MS = 1/2 ||1α|| 

Get same energy order of L-S states via 5e– or 1h+ Slater determinant 

– –Why? e2/rij expresses e – e repulsion 
h+ – h+ is also repulsion 

–so we get the same result for e2/rij by e– or h+ algebra. All Fk, Gk Slater-
Condon parameters are > 0. 

What about p5d1 vs. p1d1? Is the energy level order inverted? Hund's 1st and 
2nd rules predict the same lowest state in p5d as in (ph+)1 d1. 

What about e– vs. h+ for HSO? 
– 

HSO = ζ(N ,L,S)L ⋅S = ∑a(r )ℓ s
i i i 

i 

Take ∆MJ = 0, MJ = J = L + S matrix element of both sides of the 
HSO equation. 

This is an extreme state from the ML,MS box diagram. There is 
only one Slater determinant in this box. 

2
updated August 27, 2020 @1:34 PM 



  
 

   

 

  

 
 

   

 

  

 
 

 

5.73 Lecture #36 36 - 3 
p5 2P vs. p1 2P 

⎛ 1⎞ ⎡ 1 ⎛ 1⎞ 1 ⎤ 
!2ζ( p5 2 P, M L 

= 1, Ms 
= 1/ 2)⎝⎜1⋅ ⎠⎟ = !2ζ np ⎢1⋅ +1⋅⎝⎜ − ⎠⎟ + 0 + 0 + −1⋅ ⎥2 ⎣ 2 2 2 ⎦ 

⎛ 1⎞ = !2ζ (−1)np ⎝⎜ ⎠⎟2 
ζ(p5 2P) = –ζnp 

Now p1 2P 

⎡ 1 ⎤
!2ζ( p1 2 P, M L 

= 1, Ms 
= 1/ 2)"L$⋅#S = !2ζ np ⎣⎢

1⋅ 
⎦⎥211⋅ 

2 
ζ(p1 2P) = ζnp 

So we get a sign reversal in ζ(N 2P) for p5 vs. p1 . 

So e–↔h+ gives no change in e2/rij expressed by an always 
positive Fk and Gk. However, get sign reversed in HSO for 
ζ(N,L,S) but not for ζnℓ. 
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5.73 Lecture #36 36 - 4 
Figure 6-2 from Tinkham (page 187) for LMAX, SMAX state of 3dN 4s2 configuration 

Note that �nℓ is a one-e– orbital integral and is expected to exhibit “periodic” 
variation. It increases with atomic number and this is expected for increasing Zeff: 

Z ⟶ Z + 1, Zeff ⟶ Zeff + 1 – 1/2 
See Burns' rule paper on shielding included here: J. Chem. Phys. 41, 1521 
(1964). 

General result for � (N,L,S):
1ζ(N ,L,S) = ± ζ 

nℓ2S
MAX 

+ for n < 2ℓ +1 
– for n > 2ℓ +1 
ζ(N ,L,S) = 0 for n = 2ℓ +1 

updated August 27, 2020 @1:34 PM 
4



 
Burn's paper on Pages 5 and 6 has been removed due to copyright 
restrictions. See Burn, Gerald. "Atomic Shielding Parameters." J. 
Chem. Phys. 41 (1964): 1521–1522. 
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5.73 Lecture #36 36 - 7 
Isoelectronic species (5 valence electrons): 

C–  N O+ 

compactlarge and diffuse 
strongly shieldedpoorly shielded 
Zeff increases by 

C N O much smaller 
Si P S amount than Z (nℓ) → Z ((n +1)ℓ) 

[e.g. O Z(2p) = 8, S Z(3p) = 16] 

Zeff increases more slowly than Z 

Hund’s 3rd Rule 

1st and 2nd Hund's rules (for most stable L-S term) specify SMAX and then LMAX 
among all of the L-S states of a configuration. 

is a single Slater determinant. It is also equal to LMAX 
MLMAX 

SMAX 
MSMAX 

J = LMAX 
+ SMAX 

M JMAX 
= LMAX 

+ SMAX 

ζ nℓN = ζ m m( , LMAX 
,SMAX ) LMAX 

,SMAX nℓ ∑ ℓ i si
↑ ↑ i 

ML MS 

m m∑ ℓ i si
iζ(nℓN , LMAX 

,SMAX ) = ζ nℓ LMAX 
SMAX 

1Shell <  full N < 2ℓ +1
2 

All spins are α 

= N / 2 SMAX 

= ℓ +(ℓ −1)+…(ℓ − N +1)M LMAX 

Sum includes sum of one ℓ for each of N terms, each additive term 
decreased by 0, 1, … N – 1. 

= N (ℓ − ( N −1) 2)M LMAX 
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5.73 Lecture #36 36 - 8 

ms = α for all 
occupied spin-orbitals 

1 ∑mℓ i 

ζ(nℓN , LMAX 
,SMAX ) = ζ nℓ 

2 i 
ML = LMAXLMAX 

SMAX 

1 LMAX 2 N = ζ nℓnℓ ) = ζ nℓ 2SMAX 
= ζ 

LMAX 
( N / 2 

Similarly for shell that is more than half-full. 

1SMAX 
= {(2ℓ +1)α spins – [ N − (2ℓ +1)]β spins}

2 
= (2ℓ +1)− N / 2 

MS 
= SMAX 

= (2ℓ +1)− N / 2 
LMAX= 0 

⎡ 1 1 ⎤ 
⎢ 2 ∑mℓ i 

− 
2 ∑mℓ i ⎥ ⎣ (α) ( )β ⎦ζ(nℓN , LMAX 

,SMAX ) = ζ nℓ LMAX 
SMAX 

ζ ζ nℓ nℓ= − = −
2SMAX 

(2ℓ +1) − N / 2 
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5.73 Lecture #36 36 - 9 
So we have 

ζ(nℓN , LMAX 
,SMAX ) = 

ζ nℓ N < 2ℓ +12SMAX 

1SMAX 
= N / 2 =  # of e – 

N = 2ℓ +12 
ζ nℓ= − N > 2ℓ +1

2SMAX 

SMAX 
= [(2ℓ +1) − N / 2] = 

1 (# of h+ )
2 

Shell half full 
⎤LMAX ⎥ 

= 0 N +1SN /2 SMAX 
= N / 2 ⎦⎥ 

No fine structure.  Only a single J-Level, J = N/2. 
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5.73 Lecture #36 36 - 10 
3. Zeeman Effect. 

Provides additional information for assignment of an L–S–J state. 

HZeeman !)( LZ 
+ 2SZ ) BZ 

= −(µ0 

Bohr Magneton magnetic field 
1.399613 MHz/Gauss (entirely along Z 
1 cm–1 = 29979 MHz laboratory axis) 

In the coupled representation, |JMJLS⟩ matrix elements of HZeeman are 
awkward because it is necessary to transform from coupled to uncoupled 
|LMLSMS⟩ basis set in order to evaluate matrix elements of HZeeman. 

This is a fast way to get a closed-form expression for matrix elements of 
HZeeman in the coupled basis set. It involves a clever way to evaluate 
reduced matrix elements using the Wigner-Eckart Theorem. 

HSO and e2/rij are rigorously diagonal in J (WHY?) but HZeeman is not !
(WHY?). [Answers depend on how you classify an operator relative to J.] 

We have a battle between [HSO and e2/rij], which is diagonal in J, thus it 
tries to defend the coupled representation against HZeeman, which is 
non-diagonal in J and tries to destroy the coupled representation. 

We are interested in the weak field limit where 

HZeeman (0) − EJ 
(0) J ′ J ≪  due to the operators HSO  and e2 / rij EJ ′ 

Our special case, limited to ∆J = 0 matrix elements, fails when �(NLS) 
is small and BZ is large. 
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5.73 Lecture #36 36 - 11 

Wigner Eckart Theorem tells us 

JM ′LS L JMLS = JLS L JLS JM J ′ LS J JM J LS 

Similarly for S 

JM ′LS S JMLS = JLS S JLS JM ′LS J JMLS 

but J = L + S 

)J = ( L + S JM ′LS J JMLS 
(1−α) α 

=1 

Thus S = α J  or S = αJ !  An operator replacement! 

Now for the cleverness: 
J = L + S 

J − S = L 

)2(J − S = L2 

J2 + S2 − 2J ⋅S = L2 

J2 + S2 − L2 

J ⋅S = 
2 

Matrix elements of J2, S2, and L2 are explicitly evaluable in the coupled 
representation, |JLSMJ〉. 
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5.73 Lecture #36 36 - 12 
Thus: 

⎡ J (J +1) + S(S +1) − L(L +1) ⎤JM ′LS J ⋅S JMLS = δM ′ M 
!2 

⎣⎢ 2 ⎦⎥ 

but J ⋅S = αJ2 

αJ2JM ′LS JMLS = δ m′m 
[!2αJ ( J +1)] 

we can solve for α 

J (J +1) + S(S +1) − L(L +1) αJ ( J +1) = 
2 

J (J +1) + S(S +1) − L(L +1) α = 
2J (J +1) 

HZeeman − µ0 
B (L + 2S ) = −µ0 

B (1+ α)J z z z z z 

(1−α)J z 
αJ z 

HZeeman JMLS JMLS = −µ0 
Bz 
!M J 

(1+ α)"$$$# 
gJ 

Zeeman energy level tuning rate: 

dE 

dB 
= 

d 

dB 
B(−µ0 z 

M J 
(1+ α)) 

z z 

= −µ0 
M J 

gJ 

gJ 
= − 

1 

µ0 

1 

M J 

dE 

dB z 
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 L  3, S = 0 
gJ

gJ

5.73 Lecture #36 36 - 13 

Apply a magnetic field, each J level splits into 2J + 1 MJ components. 

# of components tells us J, gJ tells us something about L and S 

–MJ 

tuning is linear in Bz 

MJ 

S 

J = L + SJMAX 
L and S  parallel (magnetic moments add) 

L 
= L − SJMIN 

L and S  anti-parallel (magnetic moments partially cancel) 

e.g. 

for J = 3 L = 0, S = 3 L = 1, S = 2 L = 2, S = 1 L = 3, S = 0
2.000 1.667 1.333 1.000gJ 

or for L = 3, S = 1 J = 4 J = 3 J = 2 
1.250 1.0833 0.667 gJ parallel anti-parallel 
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To determine J —

light Z polarized ∆MJ = 0

5.73 Lecture #36 36 - 14 
To determine J: apply BZ field and count MJ components 

light Z polarized, ∆MJ = 0 

J′ set of equal M J ′ , M J ′ −1 splittings ⎤ 
⎥ gJ ′ ≠ gJ ′′ J′′ another set of equal M J ′′, M J ′′ −1 splittings ⎦ 

(′ for upper state, ′′ for lower state) 

Alternatively, light polarized X or Y (perpendicular to BZ) 

get M′ – M′′ = ± 1 

If you know the upper and lower state patterns, you can disentangle the 
spectrum and get gJ ′ and gJ ′′ . 

Use a pulsed laser 

Excite M + 1 

M – 1 

∆M = ±1 Light polarized X or Y 

M 

Get quantum beats ⟶ determine gJ’! For many M'' components, get a set of Zeeman 
Quantum Beats for J' upper levels, but all upper level quantum beats are at the same 
frequency! 

You can show that gJ is the same for e– and h+. 

You can use the hole Slater determinant representation to evaluate 
HZeeman for more than 1/2 filled shells. 
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