5.73 Lecture #36 36 -1
Zeeman Effect
Read CTDL, pp. 1156-1178, preparation for 1-D solids

LAST TIME:
* computational tricks and inter-relationships among atomic and
molecular constants

* H*® = {(N,L,S)L-S — a different {(N,L.S) constant for each L-S
state in configuration N

or, from H* =Y a(r)¢ s, —one {,, parameter valid for all
diagonal and off-diagonal intra-configurational matrix elements

C(N,L,S) a fit parameter
C,, an orbital integral

micro—macro forms of operators

TODAY:

1. electrons<>holes
shortcuts for ez/r,-j and H>°

2. Hund’s 3" Rule: the lowest L-S—J level of an electronic
configuration

3. Zeeman effect. Landé g-factor via Wigner-Eckart Theorem.
Another way to evaluate reduced matrix elements.

4. H”™ in Slater determinantal basis set.
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1. electrons (e”)«—holes (h*) shortcuts

subshell neN
Y% full S p d f
He~ 1 3 5 7

for p° do we need to consider 5¢ or one h*?
pP P My=1,Ms=172 |1o1B0cOB—10/|
(phH' P My =1,Ms=1/72 |lq

Get same energy order of L-S states via 5¢ or 1h™ Slater determinant

2 - - .
Why? e"/r; expresses e —¢ repulsion
h"—h" is also repulsion

so we get the same result for e?/r;; by e~ or h* algebra. All Fy, G, Slater-
Condon parameters are > 0.

What about p®d! vs. p'd!? Is the energy level order inverted? Hund's 15t and
2nd pyles predict the same lowest state in p°d as in (ph*)! d*.

What about e vs. h* for HSO?

H* ={(N,L,S)L-S= Y a(r){s.

Take AM; =0, M;=1J =L + S matrix element of both sides of the
H*° equation.

This is an extreme state from the M| ,Mg box diagram. There is
only one Slater determinant in this box.
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p5 P vs. p1 ’p

1 1 1 1
WC(p *P,M, =1,M =1/2 (1-—]:712 {1-—+1-(——j+0+0+—1-—}
(r L : ) 2775 |15 2 2

=n, (—1)(%)
{p° P) =L

Now p1 ’p

2 12 _ _ 22 1
¢ (p P,ML—I,MS—I/2)L~S—hCnp[lz
1
1=
12 2
Cp P)=Cup

So we get a sign reversal in {(N *P) for p’ vs. pl.
So ¢ <>h" gives no change in ez/r,j expressed by an always

positive Fy and Gy. However, get sign reversed in H>° for
C(N,L,S) but not for {,,,.
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Figure 6-2 from Tinkham (page 187) for Lyx, Syax state of 3dN 4s? configuration
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public domain.
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Fig. 6-2.  Spin-orbit parameters in 3d* transition elements.  The splitting parameters
ULS) are computed as indicated in Table 6-2 and averaged over the various splittings.
The data used are for the 3d*4s® configurations of the neutral atoms. (From Charlotte
E. Moore, " Atomic Energy Levels,” Natl. Bur. Standards, Circ. 467, vols. I and I,
1949 and 1952. A very similar Sfigure appears in Condon and Shortley.)

Note that {,, is a one-e~ orbital integral and is expected to exhibit “periodic”
variation. It increases with atomic number and this is expected for increasing Z¢f:
Z—7+1, 7% — Zeff +1 _1/2

See Burns' rule paper on shielding included here: J. Chem. Phys. 41, 1521
(1964).

General result for SN,L,S):
&NV, L,S)=+ C,,

28

MAX
+forn<2/+1
—forn>2/+1

C(N’L’S) =0 fOI' n=20+1 updated August 27, 2020 @[ :34 PM



Burn's paper on Pages 5 and 6 has been removed due to copyright
restrictions. See Burn, Gerald. "Atomic Shielding Parameters." J.
Chem. Phys. 41 (1964): 1521-1522.
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Isoelectronic species (5 valence electrons):
C- N Of

large and diffuse ¢ \ \_) compact

poorly shielded strongly shielded

Zef increases by
C N O much smaller
Si P S amount than Z(nt)— Z((n+1)¢)

- [e.g. O Z(2p) =8, SZ(3p) =16]

Zeff increases more slowly than Z

Hund’s 34 Rule

18t and 274 Hund's rules (for most stable L-S term) specify Sy x and then Ly x
among all of the L-S states of a configuration.

LMAX ML SMAX MS

MAX MAX

J = LMAX + SMAX MJ

is a single Slater determinant. It is also equal to

=L +.5
MAX MAX MAX

C(ngN’LMAX’SMAX)%MAX’?MAX = Cnfzméimsi

1

M M
me»ms.
N _ i ' '
C(IM ’LMAX’SMAX)_CML S
MAX "~ MAX
Shell<% full N<2/+1

All spins are o

Synx =N /2
M, =0+(1=D+..((=N+1)

MAX

Sum includes sum of one ¢ for each of N terms, each additive term
decreased by 0, 1, ... N—1.

M, =N(-(N-1)/2)
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m, = o, for all

/ occupied spin-orbitals

s
i
C(nZN’LMAX’SMAX):C"nf L S ‘\ML_LMAX
MAX"™ MAX
1
— L
_ g Max _
_CnfL (N/z)_cnf/N_z;nﬁ/zSMAX
MAX

Similarly for shell that is more than half-full.

Sinx = %{(26“)0( spins — [N —(20+1)]B spins}

=(20+1)-N/2
M;=8,, =(2+1)-N/2

~0 Liax
5 m, _5 m,
(@) B

g(an’LMAX’SMAX):CnK L S

MAX MAX
—_ Cnﬁ —_ Cnﬁ
28, (20+1)-N/2
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So we have
z;(IMN’LMAX’SI\/IAX): CM N<2/+1
2SMAX
1
Sunx =N/2==#ofe  N=2/+1
:—i N>20+1
2SMAX
1
SMAX=[(2€+1)—N/2]:E (# of ")
Shell half full
Ly =0 N+l g
S =N/2 N2
MAX —

No fine structure. Only a single J-Level, J = N/2.
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3. Zeeman Effect.

Provides additional information for assignment of an L—-S—J state.

H™™" =—(y,/7)(L,+2S,)B,

Bohr Magneton magnetic field
1.399613 MHz/Gauss (entirely along Z
1 em-! = 29979 MHz laboratory axis)

In the coupled representation, |JM;Lg matrix elements of HZeeman gre
awkward because it is necessary to transform from coupled to uncoupled
| LM; SMy) basis set in order to evaluate matrix elements of HZeeman,

This is a fast way to get a closed-form expression for matrix elements of
HZeeman jn the coupled basis set. It involves a clever way to evaluate
reduced matrix elements using the Wigner-Eckart Theorem.

H®0 and e%r;; are rigorously diagonal in J (WHY?) but HZ%eeman js not
(WHY?). [Answers depend on how you classify an operator relative to J.]

We have a battle between [H®° and e%r;], which is diagonal in J, thus it

tries to defend the coupled representation against HZeeman yhich is
non-diagonal in J and tries to destroy the coupled representation.

We are interested in the weak field limit where
<J 7| | Zeeman| g > <<‘E O _ Eﬁo)’ due to the operators H> and e’ / r,

Our special case, limited to AJ = 0 matrix elements, fails when {(NLS)
1s small and B, is large.
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Wigner Eckart Theorem tells us

(v’ LI amLs) = (LS IILIILS ) (M LS|al v, LS )

Similarly for S
(M’ LS|l JMLS ) = (JLSIISILILS ) (v LS|3l JMLS )

butJ=L+S
a) = (§| L |§ +{Isl) (sna’ LS|3l mLs)

=1

Thus <|S|>=Oc<|J|> or |S

oJ|! An operator replacement!

Now for the cleverness:

J=L+S

J-S=L

(J—S) =12

JP+S*-2J-S=17
2 2 2

J-S:J +82 L

Matrix elements of J°, S*, and L are explicitly evaluable in the coupled
representation, [JLSM;).

updated August 27, 2020 @]:34 PM
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Thus:

J(J+1)+S(S+1)—L(L+1)}

(UM’ LS|y -S| IMLS) = SM,M#[ :
butJ-S=0J’

(LS|l ames) =5 . [Wos(J+1)]

we can solve for o

JJ+D+SS+1)-L(L+1)
2

o JJ+D)+S(S+1)—L(L+1)
2J(J +1)

o (J+1)=

0

H™™ —u,B.(L,+28 )=—u

|

(1-o)y,  od,

(ImLsIHZ| JMLS) = -, B.aM , (1+ 1)
L 1

8
Zeeman energy level tuning rate:

dE d
= —uB M (+o
dB. dQ(l%Z ,(1+0)
:_luOMJgJ
1 1 dE
g, =- <

B (1+a)J

36 - 12
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Apply a magnetic field, each J level splits into 2J + 1 M; components.

# of components tells us J, gj tells us something about L and S

~M,
tuning is linear in B,
M,
il
J Jyax =L+ S L and S parallel (magnetic moments add)
Jun = |L—| L and S anti-parallel (magnetic moments partially cancel)
L
e.g.
forJ=3 L=0,S=3 L=1,S=2 L=2,S=1 L=3,S=0
g 2.000 1.667 1.333 1.000
dJ
orforL=3,S=1 J=4 I=3 I=2
1.250 1.0833 0.667
gJ parallel anti-parallel
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To determine J: apply By field and count M; components
light Z polarized, AM; =0

J set of equal M/, M’ -1 splittings

. L F L,
J”  another set of equal M”, M’ -1 splittings }g*’ &

(" for upper state, ”” for lower state)
Alternatively, light polarized X or Y (perpendicular to B,)
getM —M’"==+1

If you know the upper and lower state patterns, you can disentangle the

spectrum and get g, and g, .

Use a pulsed laser

Excite /\\ M+ 1
\M -1
AM = +1 Light polarized X or Y
M

Get quantum beats — determine g;! For many M" components, get a set of Zeeman
Quantum Beats for J' upper levels, but all upper level quantum beats are at the same

frequency!

You can show that g is the same for e and h".

You can use the hole Slater determinant representation to evaluate
H”*™" for more than 1/2 filled shells.
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