
 

 

 
 

 

 

 

 
 
 

   

 
 

 

    
 

5.73 Lecture #35 35 - 1 
SPIN - ORBIT: Many-Electron ς(N, L, S) ↔︎ Single-Orbital 

ςnℓ Coupling Constants 

∑e2 death of orbital pictureLAST TIME: rij
i ≥ j expansion of 1/rij: multipoles, integrals over AOs in 

nucleus-centered coordinates 
SELECTION RULES: orbital and many-e– basis sets 
Gaunt Coefficients: ak ,bk , ck  [products of 3-j coefficients] 
Slater-Condon (Fk, Gk)⟶(Fk, Gk)Parameters 
Sum Rule Method - avoid necessity to derive: 

*eigenvectors 
* off-diagonal elements in Slater basis 

Hund’s 1st and 2nd Rules → predict lowest L-S term of 
configuration based on rapid decrease in size of Fk 
as k increases 

A single-configuration pattern of assigned L-S terms. 

For nf2 there are 91 Slater determinants. To use the sum rule method to get the 
relative energies of all 7 L-S terms (1I, 3H, 1G, 3F, 1D, 3P, 1S), it turns out it is 
necessary to compute 28 diagonal matrix elements in the f2 Slater determinantal 
basis set. This is wonderful because it is unnecessary to compute any off-
diagonal matrix elements (see page 34-8). These L-S term energies are expressed 
in terms of F0, F2, F4, and F6 (and Gk) Slater-Condon parameters. 

TODAY: 

A. General Importance of spin-orbit term 

HSO −= ∑a(r )ℓ̂ ŝ 1 − e operator 
i 1 1 

i 

B. Trick: replace 1–e– operator by more convenient �(N,L,S)L · S for ∆S = 0, 
∆L = 0 special case matrix elements 

C. Pattern: Landé Interval Rule (Patterns are for breaking! Broken 
patterns provide information about “dark” states) 
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5.73 Lecture #35 35 - 2 

D. HSO matrix elements in Slater Determinantal Basis Set 

* another operator replacement 

* A single-orbital integral is the most fundamental control parameter: 
n,ℓ-scaling of �nℓ 

* �nℓ⟷�(N, L, S) relationship between a single-orbital coupling 
constant and that for a specific L-S state 

* off-diagonal spin-orbit matrix elements: ∆L ≠ 0, ∆S ≠ 0, ∆J = 0. 

PATTERN BREAKING 

next time → Hund’s 3rd Rule and Lande gJ–factors 

A. Importance of spin-orbit 

1. HSO produces diagnostically significant “fine structure” 
CONFIGURATIONAL ASSIGNMENTS (based on which L-S terms are 

present and the ± signs of spin-orbit splittings) 
L,S term assignments are based on 
PATTERNS:* # components 

* sign of pattern (largest splitting on top or on bottom) 
* statistical weight (2J + 1) of lowest vs. highest 

energy component 
* overall magnitude of splitting 

2. for heavy atoms, HSO is responsible for such large splittings and 
off-diagonal interactions that L-S terms “vanish”, ∆S selection 
rules are violated. “Inter-System Crossing (ISC)”. 

Need to “deperturb” to recover Fk, Gk inter-electronic 
(1/rij )parameters which should vary smoothly from atom to atom 
(isoelectronic series) (shielding rules). Periodicity! The PERIODIC 
TABLE 
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5.73 Lecture #35 35 - 3 

3. Spin-forbidden transitions provide energy linkages between manifolds of 
states with different values of S. “InterSystem Crossing (ISC)”,
e.g. Hg 3P1← 1S0 254nm 

4. Non-textbook Zeeman tuning coefficients (clues about unobserved 
“dark” states) finer detail to be used after S-O patterns reduce the 
possibilities that must be considered. 

Atoms, Molecules, Quantum Dots, solids: in an electronic transition, 
light acts on a single e– and operates exclusively on the spatial part 
of ψ → spin-flips are forbidden except when HSO mixes states of 
different S — forbidden transitions “borrow” intensity from allowed 
transitions. In the time-domain: a short pulse prepares, at t = 0, a 
non-eigenstate that is a pure ∆S = 0 excitation (and ∆ℓ = ±1) basis 
state. The “pluck”! 

Language: the name of each eigenstate is based on its dominant (i.e., 
“nominal”) character. It is the name of the dominant basis state. Use of the 
same name for both eigenstate and basis state is a source of confusion. 
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5.73 Lecture #35 35 - 4 
B. Operator Replacement for HSO 

HSO = ∑a(ri )ℓ i i si a one-e– operator 
i 

Wigner-Eckart Theorem for a vector operator — operator replacement for 
special cases where only ∆J = 0 matrix elements are considered. 

ˆ ˆ ˆJM J A JM J ′ = J A J JM J J JM J ′ 
proportionality constant matrix element of∆J = 0 reduced matrix element 

corresponding component of Ĵ 

J • VCTDL p. 1054 use projection theorem: V! = J. 
J2 

Especially useful when V is an angular momentum that is included in J. 

useful trick a(ri)ℓi vector with respect to L 
for HSO 

si vector with respect to S 

Special case of ∆L = 0, ∆S = 0 matrix elements in |NLMLSMS〉 basis set 

configuration 
label 

HSO = ∑ a(ri )ℓ i ⋅si →ζ(N , L,S)L ⋅S 
i 

operator 
replacement! 

ζ(N , L,S) ≡ L L S Sa(ri )ℓ i si* ∑ 
i 

* a different spin-orbit coupling constant for EACH L-S term of the N 
configuration (loss of simplicity) 

convenient because it is easy to evaluate matrix elements of L∙S without* 
having to resort to use of the Slater determinantal basis set 

⎡ 
⎢ 
⎢ 
⎢ 
⎢⎣ 

ASIDE: a(r )ℓ and s are both vectors with respect to J, thus HSO is scalar 
i i i 

with respect to J, hence matrix elements in the NJLSM basis set have 3
J 

special characteristics: ∆ J = 0,∆ M = 0, and independent of M .
J J 

⎤ 
⎥ 
⎥ 
⎥ 
⎥⎦ 

CAUTION: the L∙S operator seems to imply a ∆S = 0 selection rule, but we 
assumed ∆S = 0 in deriving the simplified form of HSO: �L∙S 
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5.73 Lecture #35 35 - 5 
C. Landé Interval Rule (useful for recognizing and assigning an isolated L-S term) 

J2 = L2 + S2 + 2L ⋅SJ = L + S 
J2 − L2 − S2 

L ⋅ S = 
2 

!2 

HSO NJLSM J NJLSM J = ζ(N , L,S) ⎡⎣J (J +1) − L(L +1) − S(S +1)⎤⎦2 
can be positive, 
zero, or negative 

So, within an L-S term, HSO causes splitting into 2S+1 (or 2L+1 if S > L) components. 

J 
higher J of 
the 2 levels 

(ℏ2/2)�(N,L,S)[J(J + 1) – (J – 1)J] = ℏ�(N,L,S)J 

Landé interval 
rule 

J – 1 

3P2 
* spacing is ∝ to larger of 2 J’s 
* largest spacing locates largest J2 * large spacing on top: “regular” L-S term 

bottom: “inverted” L-S term
P1 [Convince yourself that you are able to tell 3D from 3P…] 

1 
3P0 3D 3:2 3F 4:3

regular 3P [2 intervals: 2:1] 4P 5/2:3/2 4D 7/2:5/2:3/2 (4 components) 
(3 components) 

Easy to show that the degeneracy–weighted average L+S 
(each J-component has degeneracy 2J + 1) spin-orbit 
energy of a multiplet = 0 (easiest to show from the 
trace of the HSO in ∣LMLSMS〉basis).  Off-diagonal 
elements (between same-J components of different 

J = 
∑ 

|L−S|

(2J +1)EJ = 0 

L-S states) do not affect the trace of HSO. 

The interval rule plus the number of J-components of 
a multiplet determine the values of both L and S.  
[4P 5:3, 2 intervals; 2P 1 interval, 4D 7:5:3, 3 intervals] 
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5.73 Lecture #35 35 - 6 
D. Matrix Elements of HSO in Slater Determinantal Basis Set 

GOALS: * ∆S ≠ 0 matrix elements, ∆L ≠ 0 matrix elements 
* relationships between �(N,L,S) and �nℓ 

orbitalL-S term 

* excluding interconfigurational HSO matrix elements 

NONLECTURE: alternative operator replacement for HSO that is appropriate for 
orbital matrix elements 

X 
H

SO = a(ri)` i · si 
i 

replace a(ri )ℓ i by ζ  using completeness: nℓℓ i 

HSOn′ℓ′mℓ ′sms ′ nℓmℓsm s = 

n′ℓ′mℓ ′sms ′ a(ri ) nℓmℓsm s n′′ℓ′′mℓ ′′sms ′′ n′′ℓ′′mℓ ′′sms ′′ ℓ i i si∑∑ 
i '' 

completeness 

a( )ri is scalar with respect to si → m′ = m′′ and value is m′-independent s s s 

a( )ri is scalar with respect to ℓ i → ℓ′ = ℓ′′,mℓ ′ = mℓ ′′,  and value is mℓ ′-independent 

ℓ i can't change ℓ in ℓmℓ → ℓ′′ = ℓ 

ℓ i ⋅si does not operate on radial part of ψ→ n′′ = n 

HSOthus n′ℓ′mℓ ′sms ′ nℓmℓsm s a(ri ) nℓ ℓmℓ ′sms ′ ℓ ⋅s ℓmℓsm s n′ℓ′= δℓ ℓ′ 

° ⎛ n′ ⎞nℓ = (n n′ )−3/2 ζℓ = ⎝⎜ ⎠⎟
−3/2 

ζnℓn′ℓ a(ri ) nRydberg scaling for −3∝ n
inner part of orbital 

−3ζso, for n′ = n, nℓ nℓ = ζ nℓ = n ° 
ℓ

a(r )i 
Spin-orbit scaling for all members of a Rydberg series. 
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5.73 Lecture #35 35 - 7 
This reduction of HSO shows that, for atoms, HSO acts exclusively within a 
configuration except for interconfigurational matrix elements where the two 
configurations differ by a single spin-orbital of the same value of ℓ: nℓ ↔ n′ℓ"$$$$$# 

same ℓ 

Examples 

A is a single Slater determinant 

HSOA A = ∑ u a(r )ℓ ⋅s uk k k k k 
k 

spin-orbitals 

= ∑ ζ nkℓk 
ℓ m s m ℓ ⋅s ℓ m s mk ℓk k sk k ℓk k sk

k 
diagonal element picks out ℓzsz 

= "2∑ ζ m m nkℓk ℓk sk
k

spin-orbitals 

if A is also an eigenfunction of L2, Lz , S
2,  and Sz then 

HSONLM LSMS NLM LSMS = ζ(N , L,S)!2 M LMS . 

∑ ζnkℓkmℓk msk 
ζ(N , L,S) = k 

M LMS 

The matrix element is evaluated 2 ways in order to reduce a many-e– spin-orbit 
coupling constant (ς(N,L,S)) to a sum of one-e– orbital coupling constants (ςnℓ)! This 
reveals the “periodicity” for which the periodic table is famous. 
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5.73 Lecture #35 35 - 8 
Example 1. nf2 3H uncoupled representation

3 × 1/2 2 × 1/2 

uncoupled Single Slaternf 2 3 H ML = 5 MS = 1 = 3α2α 
determinant![ ( ( )]ζnf 3 1/ 2) + 2 1/ 2 

ζ (nf 2 ,3 H ) = = ζnf 2 
5 ⋅1 
MLMS(fill in the steps!) 

Example 2. nf2 in coupled representation 

coupled nf 2 3H6 MJ = 6 = 3α2α 

Landé : nf 2 3H6 MJ = 6 HSO nf 2 3H6 6 

= 
!2 

⎡⎣J (J +1) − L (L +1) − S(S + 1)⎤⎦ζ(nf 2, 3H )2 6∙7 5∙6 1∙2 

= !2 5ζ(nf 2, 3H ) from many-e– form 

3 1 / 2( ) + 2 1 / 2)⎤⎦ from orbital form= !2ζnf ⎡⎣ ( 
∴ζ(nf 2, 3H ) = ζnf 2 

what you what youExample 3: ζ(nf2, 3F) measure want to know 

3F is never expressed as a single Slater
Evaluate in either of determinant for any value of (ML,MS)
2 ways: 

a. Obtain explicit linear combination of Slater determinants using ladders 
and orthogonality or using L2 ,S2  to get nf2 3 F ML = 3 MS = 1  [laborious]. 

b. Slater sum rule method [simple]. 

M L = 3, MS = 1 box: contains only  3α0α , 2α1α 
trace 3α0α + 2α1α = E ( 3 H M L = 3, MS = 1) + E ( 3 F M L = 3, MS = 1) 
1st Matrix ⎡ 3 ⎤

HSO 3α0α = 3α0α 3α0α + 0Element = !2ζnf ⎢ 2 ⎥
⎣ ⎦ 
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5.73 Lecture #35 35 - 9 
second ⎡ 1 ⎤HSO matrix 2α1α = 2α1α 2α1α = !2ζnf ⎢1+ ⎥ 

element ⎣ 2 ⎦ 

trace of M = 3, M = 1 box is 3!2ζL S nf 

exploit E ( 3 H ML = 3 MS = 1) = 3H ML = 3 MS = 1 HSO 3H 31 = ζ (nf 2, 3H )!2 3⋅1sum rule 

but we already showed that ζ(nf2, 3H) = ζnℓ/2 

E 3 H ML = 3, MS = 1( ) = !2ζnf 3 2( ) 
∴ E ( 3 F M = 3,M = 1) = 3!2ζ − (3 2)!2ζ = (3 2)!2ζ

L S nf nf nf 

HSO sum for the ML = 3, 3F !2= 3F 31 3F 31 = ζ(nf 2, )(3 ⋅1)MS = 1 box 

13F∴ζ(nf 2, ) = ζ 
2 nf 

⎛ 1 ⎞ 
⎜ actually would find, for  nf 2 ,ζ(nf 2,3 L) =  for all L⎝ 2 

ζnf ⎠⎟ 

[not true for all configurations] 

We are not done. There are some ∆J = 0 off-diagonal in L,S matrix elements among 
the L-S-J terms of the same configuration. 

nf 2 , 1I , 3H , 1G, 3 F, 1D, 3P, 1S, 

HSO is diagonal in J 
must diagonalize two 3 × 3 
and two 2 × 2 matrices. 

6 6 

5 

4 4 4 

3 

2 2 2 

1 

0 0 
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5.73 Lecture #35 35 - 10 
set up the J = 6 matrix because it is simplest 

1I6 6 = 3α3β 
3H6 6 = 3α2α 

HSO HSO1I6 6 3 H6 6 = 3α3β 3α 2α 

Mismatch is in 2nd spin-orbital. 
Needs 1/2 ℓ+s– operator to give nonzero spin-orbit matrix element. 

1 = 3β 2α2 
ℓ 
+ 
s
− 

= "2ζ 
1
2
[3 ⋅4 − 2 ⋅3]1/2 

= "2ζ ( 32 )
1/2 

nf nf 

zero for all singlet states 

⎛ )1/2 ⎞ 
H = 

I6 0 (3 /2 
J= 6
SO ⎜⎜ )1/2 ⎟⎟ h "2ςnf 

1

3H6 ⎝ (3 / 2 5 / 2 ⎠ 

!23H66 HSO 3H66 = ⎡⎣ J( J + 1) − L(L + 1) − S(S + 1)⎤⎦ζ(nf 2 , 3H)2 

= !25ζ(nf 2 , 3H) = !2 (5 / 2)ζnf 

for more complex configurations such as (nℓ)a(n′ℓ′〉)b → ςnℓ and ςn′ℓ′: two ς parameters 
needed, 1 for each of the two open subshell orbitals. 

But can use the value of ςnℓ determined from some other configuration: 
e.g. ς3d from 3d64s2 can be used to predict the 3d part of HSO in 3d6 4s4p. Unexpected 
inter-relationships between superficially unrelated observables. Small number of 
control parameters. Magic decoder! 

Hund’s 3rd Rule: lowest energy J level of lowest energy L – S term is J = |L – S| 
if subshell is less than ½ full, but it is J = L + S if subshell is 
more than ½ full, and J = S (no spin-orbit splitting) because 
L = 0 for a half-filled subshell. Sign of �(n,L,S) as diagnostic! 

NEXT TIME! 
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