5.73 Lecture #34 34 -1
e?/r;; and Slater Sum Rule Method

LAST TIME: 1. The L2,S? matrix method for setting up [INLM; SMg) many-
electron basis states in terms of linear combination of Slater
determinants L'>LL
*Mp, =0, Mg =0 block: g2 _ S.S

* diagonalize S? (singlets and triplets)

* diagonalize L2 in same basis that diagonalizes S*
[Recall: to get matrix elements of L2, first evaluate L2 |||\Ifl||)
and then left multiply by(||\|l j|||]

coupled representations |njo/syand |NJLSM ;)
Projection operators: automated projection of L2
eigenfunctions

* remove unwanted L” part

* preserve normalization of wanted L’ part

* remove overlap factor

* easy to write computer program that automates the
projection method

@ o

TODAY:

1. Slater Sum Rule Trick (based on trace invariance): MAIN IDEA OF LECTURE.

2. Evaluate };sje?/r;; matrix elements (tedious, but good for you)
[1/7ij 1s a 2 — e~ operator that involves spatial coordinates only, scalar with
respect to J, L, and S].

* multipole expansion of charge distribution due to “other electrons”
* matrix element selection rules for e?/r;j in both Slater determinantal and

many-e~ basis sets
* Gaunt Coefficients (c¥) (tabulated) and Slater-Condon (F*, G¥) Coulomb and

1 ab)

Exchange parameters. Because of the sum rule, can evaluate most {ab —
ij

1
T'ij

1

and {(ab

ba) type matrix elements and never need to evaluate (ab cd)-type

le
matrix elements except when the configuration includes two same-L,S terms.

3. Apply Sum Rule Method
4. Hund’s 1st and 2rd Rules

updated August 28, 2020 @ 11:19 AM



5.73 Lecture #34 34 -2

1. Slater’ s Sum Rule Method

It is almost always possible to evaluate e?/rij matrix elements without solving for all
| LM1.SMs) basis states

* trace of any Hermitian matrix, expressed in ANY representation, is the sum of the
eigenvalues of that matrix (thus invariant to unitary transformation)

* Yisje?/rij and every scalar operator with respect to J (or L, $) has non-zero matrix
elements diagonal in J and M (or L and Mr) and independent of My (or Mr,Ms)

[W-E Theorem: J is the GENERIC ANGULAR MOMENTUM with respect to which
e2/rij is classified]

Recall from definition of riz2, that e2/rij is a scalar operator with respect to J L,S but
not with respect to ji or #i.

. . 2
Interelectronic Repulsion: Ze /”,y

i>j
* destroys the single-electron orbital approximation |nf1) for electronic

structure calculations
* “correlation energy,” “shielding”

€ -

; e, at (r1a01a¢1)
; e, at (’"2 792’¢2)

—

o =hH =1
) 2
—— =K —2h

1/2
N2 = [’”12 +V22 _2"”1“’”2‘“5(?1’?2)}
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Scalar with respect
tod, L, S, s; but
not j;, ;. Do you
know why?
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r

>

.. r
expand rl‘zl as power series in [i]

. . . the larger r, is seeing the
tegrals evaluated in 2 regions: r; <r,, r,<r . i
(integrals evalu In 2 regions: ry <1y, 1y <7 multipoles of the smaller r;

see Eyring, Walter, and Kimball, “Quantum Chemistry”,
lengthy algebra | pages 369-371 and, for relationship between Legendre
polynomials and ¥,"(6,0), pages 52-59.
will evaluate for orbitals occupied by ith e-

l—2“-pole moment (n=0 monopole, n=1 dipole,...)
v

®=0 m=—n 2n+1

multipole 1 S S 4TC 4
expansion Z = 2 Z ’;+1 91 ’¢ [Y 9}’¢ )]

i
> angular momenta
| — |
convergent ;magnltude n, projection m

series : i

] :
not prln(’npal / scalar product of 2 angular momenta, one
K 1(r. " for i-th particle, one for j-th
r> r)

I* converts m to —m

An n-pole charge distribution is an n-th rank tensor with 2n+1
components.

No dependence on electron spin, so l/rij is scalar with respectto S, s, s..

m — — —
Yn (91-»43-)— ei’q)i gi =n, mfl. =m
1
indices of Y
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The reason for this rather complicated looking expansion is that it is well
suited for integrals over atomic orbitals which are expressed in terms of
r;, 6, ¢, which are the coordinates of the i-th e~ with respect to the center
of symmetry (nucleus) rather than the other e~. It enables use of atomic
orbital basis states. Otherwise the 1/r;; integrals would be nightmares.

n=€,m=m[>

Y"(6.0)=(6.0

Selection rules for matrix elements:

<€imi

Y"

Emi )t m,

Y"

;)

| not principal g. n. |

i|S@§, Am, =m, Am =0

orbitals
, Am, =-m, Am_=0

J

term in multipole expansion |

triangle rule, |¢, = )| <n</{,+ /]

(non-zero for steps in n of an even number because of parity)

overall: AL=0,AS =0, AM; =0, AMg =0, and independent of M,
M. Can use any M;, Mg Slater determinant from the box diagram.

o -

It is also clear how to evaluate the angular factors of the atomic orbital matrix
elements using 3-j coefficients. Special tables of “Gaunt Coefficients” (also
Condon and Shortley pages 178-179, Golding, page 41).
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general 1/r,, matrix element (non-zero matrix elements of the 1/r,, operator follow
the As-0 =0, 1, and 2 spin-orbital selection rule for change in spin-orbitals)

)
| | 1 1
lattl /7l = ( abl-—ed )= { abj-—de
' r v
el_ 12 12
1
ab|—|cd :S(m ,m )8(171 ,m )5(m +m, ,m, +m )X
7 s, s, Sy Sy l, Ly ‘. L,
12 ,
% % 111 dqes notdqpe:ate *% 1/r;5 scalar with respect
Ofh SPH COOTIMATES to L,=1/ +/, (can't change M)
2 ck(fm ém)ck(ﬁm { m )ka(nannfnf)
=0 a fa’ ¢ lc b b d d a a b b ¢ cd d
, , . ~ y - . . .
tensor rank for . . radial factor
product of AOs GAUNT COEFFICIENTS — A “reduced matrix
, _ ANGULAR FACTOR OF N
occupied by e #1 INTEGRAL element” because all m
must be same quantum numbers are
gone.

as fore #2 for scalar
product of two
n-th rank tensors

, 1/2
2€ +1 kM’Akf’E

2€+1 000 ~“m,~m),m,—m,

Clebsch-Gordan coefficients

ck(fmg,é'mg,)z

tabulated
that result from integral over
the product of three spherical
harmonics — one from
operator, two from orbitals
triangle rule: ’f —V\<k<i+/V
{+ 0" +k= even (from properties of Aé‘(fé) (including parity)
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. . 9 ’
restrictions on k and m: € 1ntegra} I m, +m= m,

m 7/ ’
<n1€1m£1 Yllc ‘n1{1m51>

|
triangle rule

For intra-configuration matrix elements, R*(abcd) has an especially simple form
(because the same one or two orbitals appear in both the bra and in the ket).

R*(ab,ab) = F*(a,b)

“Slater — Condon” parameters
Rk(ab , ba) = Gk (a , b) (these are reduced matrix elements dependent only on /,,

£, L, 4 and not on any of the m, quantum numbers.) All
L-S states that belong to the same configuration are

expressed in terms of the same set of F*, G* parameters.

spins must match or
2 K term will vanish
e
latf|—{llat)

— (Thisis h inglet and
- J(aa b ) - 8(Wlsa 9 me )K (Cl, b) t]riplliztlSstaotvevsSllll.;l%(;3 d?f?erent

E even though 1/r;; does not
DIRECT EXCHANGE operate on the spin factor.)

"o

ab> = ch(famla,faméa)ck(ébméb,ébm/b)ka (naéa,nbﬁb)

a*(¢,m, t,m,) [ [[a*®)a@Opb*@b@)dr, drz}

l classical charge distributions

ba :S(ms ,msb)i [ck(ﬁamka,ﬂbm%)TGk(nafa,nbﬁb)

b* (famlu Lym, )

[ [Ja*@bm)Opa@p *@)dx, d, |

something not classical!

for special cases, such as nd?, we have the simplified result that n, ¢, = n,¢,
and F* = G*

Now we are ready to set up tables of ¢* (or, more conveniently, a* and b*) to evaluate
the e2/rij matrix.
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Easy example: nf?

7 60) =|3e:3p8]
*H 51) = 3020l

34 -7

(recall that L-S terms of f2 are I, 3H, G, 3F, 1D, 3P, 1S)

1] and 3H are the only L-S states from the f?
configuration that are represented by a single
Slater determinant — extremes of the M;,Mg box
diagram.

[You really do not want to calculate off-diagonal
matrix elements of a two-electron operator if you
can help it!]

Since e?/r;; is a scalar operator with respect to L, S, J, matrix elements are M;, M,
and M; independent — so we can use any M;,Mg component to evaluate the matrix
element — whichever is most convenient!

>

k=0,2,4,6

()

k=0,2,4,6
e
3 3
H—H)= Y
P r=02486

E

c"(33.33)c" (33.33)F" (nf inf ) - 8(a.B)Y. [¢* (33.33)] G*(nf .nf)

Im,
20

[c*(33,33)] F*(nf .nf)

[
=0 . . FX(nf?

one spin is @,

other spin is 8

€ ,6

€ ,€ €,,6,

{[ck 33,33)c" 32,32)]Fk(nf,nf)—[ck(33,32)]2Gk(nf,nf)}

- - both spins o
¢, )

(o, 0) B.p)

e Ca

Use table of ¢* in Golding (page 41)/C&S handout (C&S page 179).

Note that [1/(7361+64)]"2 is implicit after the first entry for 2, £ = 6.
Here is where everyone makes mistakes!

"(33,33)
“(32,32)
"(33,32)

Dy

convenient,

factor

k=0 2 4 6
1 ~1/3 1/11 —[1/7361+64]"*
1 0 ~7/33 +[36/7361+64]"
0 +1/3 30433 +[7/736164]"?
1 225 1089 = 33° 736164

C&S Table: the number listed goes inside the
SQRT replacing the numerator in the first row.
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D, is a factor that simplifies the expressions. Each term has the form F*/D,. Call

this ratio F), [notice F* vs. F,]. Get simpler looking expressions when you replace
by D,F, (D, appears in denominators of c¢* as [.../D,]?)

) Always have the
<1I}i 1[> _ RO (%)Fz + (LJFAL +( 1 )FG product of two factors of
Tio

121 /361-64 ck. Thus Fk gets divided
<
o

by D, to yield F,.
= I, +25F, + 9F, + I

3H> - J{[_%j(())_ (1/3)2}1?2 i KiX;Q 333033}174 J{%}FG

— FO _lFQ _ 51 F4 _13 F6
9 (33)° 7361 64
- F, - 25F, - 51F, —13F,

A lot of bookkeeping, but it's possible to learn how to use tables of ¢*, a*, b%, and D,

except it is much more work for f2 than for /2 (but the job is not yet complete for the
L-S terms beyond I and 3H!

SUM RULE METHOD:

Basic idea is that the sum of all the diagonal elements in the single Slater determinant
basis set within an M;, Mg box is equal to the sum of the eigenvalues!

Look at the M, = 3,M¢ =1 box: IBa0ad| and |2alol|. This box generates |3H31>

and ‘ F 31>, but the trace is EGH) + E(F) and we already know E(3H)!
So E( '1)={|[30:38)))

= (|130201)

={Bo0ad ) + (Ralal) - ECH)

= {|[301B|[) + (| |3B1oy|) + | Ro2p|) - EC'1) - ECH)

= (|13~ 1B|J) + (|13 — 1ot )+ (| 2oOB| [+ [2B0c
1Bl - EC'1) - E('G)- ECH) - ECF)
ECP)=(Boc— 20l + (20— 10d]) + (1000l ) - ECH) - ECF)
E('S)=sum of seven {| ) — sum of six E(***'L)

0
—~
w
&
\_/\_/\_/v
s

+
T
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This seems exceptionally laborious, but it is much easier than:

generating each |[LM; = L SMg = S) eigen-state as an explicit linear combination
of Slater determinants

then calculating matrix elements of e?/r;, because there are many nonzero off-
diagonal matrix elements between Slater determinants in the same M;,Mg box.

*

*

2 25+1

Here is the final result for the energies of all of the (nf) L terms:
E=E“+EVY+E®
. . Z*R Bare nucleus

E©® = sum of orbital energies from h” = = e, hydrogenic orbital

o_/,2 SO energy — or partly
EV =(e’/r,)+(H®) shielded by filled shells.

E/_J
ready now next

lecture

E® = (in'mr_aconfiguraional spin-orbit) + (inte_rconfigurational e’ / rij)

Configuration Interaction

shielded by shielded by
For nf* | 11 filled same
subshells subshell
1 2¢,, +E(nf’) +25F(nf?) +9F(nf?) +FE(nf)
H 2¢e, +F — 25F, - 51F, — 13F, <—lowest
'G 2e. +F — 30, + 97F, + 78F,
3 might
F 2e, + K - 10F, - 33F, — 286l €——have been
lowest
'D 2¢, + K + 19F, — 99F, + 715F,
P 2e. +F + 45F, + 33F, — 1287F, €—also might
have been
'S 2. +E + 60F, + 198F, + 1716F, lowest
' ! 1 I
shielded-core intraconfiguration L-S term splittings
configurational
energy

(there is NO center of Gravity Rule for degeneracy weighted L-S terms)
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Now it is easy to show that all F,’ s are > 0 and F| > [H,, etc. (by roughly a factor
of 10 per step in k).

From this we get an empirical rule (empirical because we expect that
contributions to E(L,S) from F, and F; can be ignored).

Lowest E of all L-S terms is the one with

* MAXIMUM S
*  of those with Maximum S, lowest 1s the one with MAXIMUM L.

These are Hund’ s first and second (of three) rules.

Note also that Hund’ s rules make no predictions about the energy order of L-S terms
except for the identity of the single, lowest energy L-S term.

updated August 28, 2020 @ 11:19 AM
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Non-Lecture

There are several interesting problems also solved by this e?/r;; formalism.

1. The energy splittings between and the Slater determinantal characters of two or
more L,S terms of the same L and S that belong to the same electronic
configuration

e.g. d3 — two 2D terms
see pages 47-50 of Golding for 2 X 2 secular determinant for 2D of d?

2. matrix elements of e?/r; between same—L,S terms that belong to two different

configurations choose any pair of
e.g. nd’ S*P'D’F)G orthogonal combinations of
o3 T 3 ] Slaters. What you choose
dn’ S;P,D;F,G determines the values of
n 3§ 1p 3D IF 3G the of f-diagonal matrix
o elements but not the eigen-
energies

}no Pauli restrictions

So, for L-S terms that belong to the nd2 configurations, there will be
'S~'S
3P~3P
'D~'D
3F~3F
'G~'G
interconfigurational interaction matrix elements and each of these 5 interaction
matrix elements will NOT be of the same magnitude. There will be different

Configuration Interaction energy shifts for the various L-S terms in a
configuration.

Knowing the single configuration expected pattern of L-S states (energies and
other properties) enables detection of local inter-configuration perturbations.
Predicted patterns are EVERYTHING to an experimentalist!
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