e2/rij and Slater Sum Rule Method

TODAY:

- 1. Slater Sum Rule Trick (based on trace invariance): MAIN IDEA OF LECTURE.
- 2. Evaluate $\sum_{i> j} e^2/r_{ij}$ matrix elements (tedious, but good for you) $[1/r_{ij}]$ is a 2 – e^- operator that involves spatial coordinates only, scalar with respect to **J, L,** and **S**].

many- e^- basis sets * *multipole expansion* of charge distribution due to "other electrons" * matrix element selection rules for e^2/r_{ij} in both Slater determinantal and * Gaunt Coefficients (c^k) (tabulated) and Slater-Condon (F^k, G^k) Coulomb and

Exchange parameters. Because of the sum rule, can evaluate most $\langle ab \frac{1}{r_{ii}} ab \rangle$ and $\langle ab \frac{1}{r_i} \mid ba \rangle$ type matrix elements and never need to evaluate $\langle ab \frac{1}{r_i} \mid cd \rangle$ -type matrix elements except when the configuration includes two same-L,S terms.

- 3. Apply Sum Rule Method
- 4. Hund's 1st and 2nd Rules

1. Slater's Sum Rule Method

It is almost always possible to evaluate e^2/r_{ij} matrix elements without solving for all |*LMLSMS*⟩ basis states

* trace of any Hermitian matrix, expressed in ANY representation, is the sum of the eigenvalues of that matrix (thus invariant to unitary transformation)

 elements *diagonal* in *J* and *MJ* (or *L* and *ML*) and *independent* of *MJ* (or *ML*,*MS*) * $\sum_{i>j} e^2 / r_{ij}$ and every scalar operator with respect to \int (or \hat{L} , \hat{S}) has non-zero matrix

[W-E Theorem: **J** is the GENERIC ANGULAR MOMENTUM with respect to which *e*2/*rij* is classified]

Recall from definition of r₁₂, that e^2/r_{ij} is a scalar operator with respect to \hat{J} , \hat{L} , \hat{S} but not with respect to \mathbf{j}_i or $\mathbf{\ell}_i$.

Interelectronic Repulsion: $\sum e^2 / r_{ij}$ *i* > *j*

* destroys the single-electron orbital approximation $\ket{n\ell\lambda}$ for electronic structure calculations

* "correlation energy," "shielding" \Box

Scalar with respect to J, L, S, s_i but not j_i,
$$
l_i
$$
. Do you know why?
\n
$$
r_{12}^2 = r_1^2 - 2r_1 \cdot r_2 + r_2^2
$$
\n
$$
r_{12} = \left[r_1^2 + r_2^2 - 2|r_1||r_2|\cos(\vec{r}_1, \vec{r}_2) \right]^{1/2}
$$

updated August 28, 2020 @ 11:19 AM

where r_{c} is the smaller of $|r_1|, |r_2|$ $\int_{\mathcal{L}}$ *r* > \overline{a} ⎟ \overline{a} expand r_{12}^{-1} as power series in | ⎝

An n-pole charge distribution is an n-th rank tensor with 2n+1 components.

No dependence on electron spin, so $1/r_{ij}$ is scalar with respect to S, s_i, s_j.

$$
\left[Y_n^m(\theta_i,\phi_i)=\left\langle \theta_i,\phi_i\middle| \ell_i=n, m_{\ell_i}=m\right\rangle\right]
$$
\n
$$
\left[\frac{Y_n^m(\theta_i,\phi_i)=\left\langle \theta_i,\phi_i\middle| \ell_i=n, m_{\ell_i}=m\right\rangle\right]
$$

The reason for this rather complicated looking expansion is that it is well suited for integrals over atomic orbitals which are expressed in terms of r_i , θ_i , ϕ_i , which are the coordinates of the i-th e⁻ with respect to the center of symmetry (nucleus) rather than the other e–. It enables use of atomic orbital basis states. Otherwise the $1/r_{ij}$ integrals would be nightmares.

$$
Y_n^m(\theta,\phi) = \langle \theta,\phi | n = \ell, m = m_\ell \rangle
$$

Selection rules for matrix elements:

$$
\langle \ell_i m_i | Y_n^m | \ell'_i m'_i \rangle \langle \ell_j m_j | Y_n^m | \ell'_j m'_j \rangle
$$

\n
$$
\begin{array}{c}\n\hline\n\text{not principal q. n.} \\
\hline\n\text{orbitals}\n\begin{cases}\n\left|\Delta \ell_i\right| \leq n, & \Delta m_{\ell_i} = m, & \Delta m_{s_i} = 0 \\
\left|\Delta \ell_j\right| \leq n, & \Delta m_{\ell_j} = -m, & \Delta m_{s_j} = 0\n\end{cases}\n\hline\n\text{triangle rule, } |\ell_i - \ell'_i| \leq n \leq \ell_i + \ell'_i
$$

(non-zero for steps in *n* of an even number because of parity)

! $\begin{cases} \text{overall: } \Delta L = 0, \Delta S = 0, \Delta M_L = 0, \Delta M_S = 0, \text{ and independent of } M_L, M_S. \text{ Can use any } M_L, M_S. \text{ Slater determinant from the box diagram.} \end{cases}$

It is also clear how to evaluate the angular factors of the atomic orbital matrix elements using 3-j coefficients. Special tables of "Gaunt Coefficients" (also Condon and Shortley pages 178-179, Golding, page 41).

$$
\langle ||ab||1/r_{12}||cd||\rangle = \langle ab\left|\frac{1}{r_{12}}\right|cd\rangle - \langle ab\left|\frac{1}{r_{12}}\right|dc\rangle
$$
\n
$$
\langle ab\left|\frac{1}{r_{12}}\right|cd\rangle = \delta\left(m_{s_a},m_{s_c}\right)\delta\left(m_{s_b},m_{s_d}\right)\delta\left(m_{\ell_a}+m_{\ell_b},m_{\ell_c}+m_{\ell_d}\right) \times \frac{\mathbb{E}\left[\mathbb{E}\left[\left|\frac{1}{r_{12}}\right|\right]cd\right]^{1/2}}{\mathbb{E}\left[\mathbb{E}\left[\frac{1}{r_{12}}\right]^{1/2}\right]^{\text{does not operate}}\mathbb{E}\left[\mathbb{E}\left[\frac{1}{r_{12}}\right]^{1/2}\right]^{\text{scalar with respect to }L_{12}=\hat{\ell}_1+\hat{\ell}_2 \text{ (cant change }M_L)}
$$
\n
$$
\sum_{k=0}^{\infty}\frac{c^k\left(\ell_a m_{\ell_a},\ell_c m_{\ell_c}\right)c^k\left(\ell_b m_{\ell_b},\ell_d m_{\ell_d}\right)\times R^k\left(n_a\ell_a n_b\ell_b n_c\ell_c n_d\ell_d\right)}{\mathbb{E}\left[\frac{1}{r_{12}}\right]^{\text{real}}\right]}.
$$
\n
$$
\sum_{k=0}^{\infty}\frac{c^k\left(\ell_a m_{\ell_a},\ell_c m_{\ell_c}\right)c^k\left(\ell_b m_{\ell_b},\ell_d m_{\ell_d}\right)\times R^k\left(n_a\ell_a n_b\ell_b n_c\ell_c n_d\ell_d\right)}{\mathbb{E}\left[\frac{1}{r_{12}}\right]^{\text{real}}}\right]
$$

product of AOs

must be same

as for e^- #2 for scalar gone. product of two n-th rank tensors

ANGULAR FACTOR OF

GAUNT COEFFICIENTS — A "reduced matrix occupied by $e^{-\#1}$ ANGULAR FACTOR OF element" because all m quantum numbers are
gone.

$$
c^{k}(\ell m_{\ell}, \ell' m_{\ell'}) \equiv \left[\frac{2\ell'+1}{2\ell+1}\right]^{1/2} A_{000}^{k\ell\ell'} A_{m_{\ell}-m'_{\ell},m'_{\ell}-m_{\ell}}^{k\ell'\ell}
$$

triangle rule: $|\ell - \ell'| \leq k \leq \ell + \ell'$

tabulated Clebsch-Gordan coefficients that result from integral over the product of three spherical harmonics — one from operator, two from orbitals

 $l + l' + k =$ even (from properties of $A_{000}^{k \ell \ell'}$) (including parity)

restrictions on k and m:
$$
e_1
$$
 integral
\n
$$
\left\langle n_1 \ell_1 m_{\ell_1} \Big| Y_k^m \Big| n_1' \ell_1' m_{\ell_1}' \right\rangle
$$
\n
$$
\left\langle n_1 \ell_1 m_{\ell_1} \Big| Y_k^m \Big| n_1' \ell_1' m_{\ell_1}' \right\rangle
$$
\ntriangle

For intra-configuration matrix elements, *Rk*(*abcd*) has an especially simple form (because the same one or two orbitals appear in both the bra and in the ket).

$$
R^{k}(ab,ab) \equiv F^{k}(a,b) \Big|_{\substack{\text{theo are reduced matrix elements dependent only on }\ell_a, \\ \text{theo are reduced matrix elements dependent only on }\ell_b, \\ L-S states that belong to the m_{ℓ} quantum numbers.) All expressed in terms of the same configuration are expressed in terms of the same set of F^{k}, G^{k} parameters.
$$
\left\langle ||ab|| \frac{e^{2}}{r_{12}}||lab|| \right\rangle = J(a,b) - \delta(m_{s_a}, m_{s_b}) K(a,b) \qquad \text{(This is how singlet and triplestates have different EXCHANGE operator)} \text{EXCHANGE operator. } E \text{ even though } \frac{1}{r_{13}} \text{ does not have a different EXCHANGE operator. } E \text{ is given by } \frac{1}{r_{13}} \text{ does not have a different } \frac{1}{r_{12}} \text{ does not have a different } \frac{1}{r_{12}} \text{ does not have a different } \frac{1}{r_{13}} \text{ (where } \frac{1}{r_{13}} \text{ is the same if } \frac{1}{r_{13}} \text{ is the same if
$$
$$

$$
K(a,b) = \left\langle ab \middle| \frac{e^2}{r_{12}} \middle| ba \right\rangle = \delta \left(m_{s_a}, m_{s_b} \right) \sum_{k=0}^{\infty} \underbrace{\left[c^k \left(\ell_a m_{\ell_a}, \ell_b m_{\ell_b} \right) \right]^2}_{b^k \left(\ell_a m_{\ell_a}, \ell_b m_{\ell_b} \right)}
$$
\n
$$
\underbrace{\left[\int a^* (1) b(1) \hat{\mathbf{O}} \mathbf{p} a(2) b^* (2) d\tau_1 d\tau_2 \right]
$$
\n
$$
\underbrace{\left[\int a^* (1) b(1) \hat{\mathbf{O}} \mathbf{p} a(2) b^* (2) d\tau_1 d\tau_2 \right]
$$
\n
$$
\underbrace{\left[\int a^* (1) b(1) \hat{\mathbf{O}} \mathbf{p} a(2) b^* (2) d\tau_1 d\tau_2 \right]
$$

for special cases, such as nd^2 , we have the simplified result that $n_a \ell_a = n_b \ell_b$ and $F^k = G^k$

 the *e*2/*rij* matrix. Now we are ready to set up tables of c^k (or, more conveniently, a^k and b^k) to evaluate

$$
\begin{vmatrix} 1I & 60 \\ 3H & 51 \end{vmatrix} = \|3\alpha 3\beta\|
$$

$$
\begin{vmatrix} 3H & 51 \\ 3H & 61 \end{vmatrix} = \|3\alpha 2\alpha\|
$$

¹*I* and ³*H* are the only *L*-*S* states from the f^2 configuration that are represented by a single
Slater determinant — extremes of the M_L , M_S box
diagram.
 \bigcap [You really do not want to calculate off-diagonal

 $\left\|3H\right\|51$ = $\left\|3\alpha2\alpha\right\| \right\|$ and trix elements of a two-electron operator if you

Since e^{2}/r_{ij} is a scalar operator with respect to $\hat{\mathbf{L}}$, $\hat{\mathbf{S}}$, $\hat{\mathbf{J}}$, matrix elements are M_L , M_S , and M_J independent — so we can use $any \ M_L$, M_S component to evaluate the matrix element — whichever is most convenient!

$$
\left\langle {}^{1}I\left|\frac{e^{2}}{r_{12}}\right|I\right\rangle = \sum_{k=0,2,4,6} c^{k}(\underbrace{33,33}_{\ell m_{\ell}})c^{k}(33,33)F^{k}(nf,nf) - \delta(\alpha,\beta)\sum_{i=0} c^{k}(33,33)\int_{\alpha}^{2}G^{k}(nf,nf)
$$
\n
$$
= \sum_{k=0,2,4,6} [c^{k}(33,33)]^{2}F^{k}(nf,nf)
$$
\n
$$
\left\langle {}^{3}H\left|\frac{e^{2}}{r_{12}}\right|{}^{3}H\right\rangle = \sum_{k=0,2,4,6} \left\{ [c^{k}(33,33)]^{2}F^{k}(nf,nf) - [c^{k}(33,32)]^{2}G^{k}(nf,nf) \right\}
$$
\n
$$
\left\langle {}^{3}H\left|\frac{e^{2}}{r_{12}}\right|{}^{3}H\right\rangle = \sum_{k=0,2,4,6} \left\{ [c^{k}(33,33)]c^{k}(32,32)]F^{k}(nf,nf) - [c^{k}(33,32)]^{2}G^{k}(nf,nf) \right\}
$$
\n
$$
\frac{[c_{1}^{-}]}{(0,\alpha)} \left[\frac{c_{2}^{-}}{c_{2}^{-}}\right]
$$
\n
$$
\frac{[c_{2}^{-}]}{(0,\beta)}
$$
\n
$$
\frac{[c_{2}^{-}]}{(0,\beta)}
$$
\n
$$
\frac{[c_{2}^{-}]}{(0,\beta)}
$$
\n
$$
\frac{[c_{2}^{-}]}{(0,\beta)}
$$

Use table of *ck* in Golding (page 41)/C&S handout (C&S page 179).

Note that $[1/(7361 \cdot 64)]^{1/2}$ is implicit after the first entry for f^2 , $k = 6$. Here is where everyone makes mistakes!

factor C&S Table: the number listed goes inside the SQRT replacing the numerator in the first row.

 D_k is a factor that simplifies the expressions. Each term has the form F^k/D_k . Call this ratio F_k [notice F^k vs. F_k]. Get simpler looking expressions when you replace F^k by $D_kF_k(D_k)$ appears in denominators of c^k as $[.../D_k]^{1/2}$)

$$
\left\langle {}^{1}I\left|\frac{e^{2}}{r_{12}}\right|^{1}I\right\rangle = F^{0} + \left(\frac{1}{9}\right)F^{2} + \left(\frac{1}{121}\right)F^{4} + \left(\frac{1}{7361\cdot 64}\right)F^{6}
$$
\n
$$
= F_{0} + 25F_{2} + 9F_{4} + F_{6}
$$
\n
$$
{}^{3}H\left|\frac{e^{2}}{r_{12}}\right|^{3}H\right\rangle = F^{0} + \left[\left(-\frac{1}{3}\right)\left(0\right) - \left(1/3\right)^{2}\right]F^{2} + \left[\left(\frac{1}{11}\right)\left(\frac{-7}{33}\right) - \frac{30}{33\cdot 33}\right]F^{4} + \left[\frac{-6-7}{7361\cdot 64}\right]F^{6}
$$
\n
$$
= F^{0} - \frac{1}{9}F^{2} - \frac{51}{\left(33\right)^{2}}F^{4} + \frac{-13}{7361\cdot 64}F^{6}
$$
\n
$$
= F_{0} - 25F_{2} - 51F_{4} - 13F_{6}
$$

A lot of bookkeeping, but it's possible to learn how to use tables of c^k , a^k , b^k , and D_k , except it is much more work for f^3 than for f^2 (but the job is not yet complete for the $L-S$ terms beyond $1I$ and $3H$!

SUM RULE METHOD:

Basic idea is that the sum of all the diagonal elements in the single Slater determinant basis set within an M_L , M_S box is equal to the sum of the eigenvalues!

Look at the $M_{_L}$ = 3, $M_{_S}$ = 1 box: $|\beta\alpha0\alpha| |$ and $|\beta\alpha1\alpha| |$. This box generates $\left| {}^3H_{}^31\right\rangle$ and $\ket{^3F31}$, but the trace is $E(^3H) + E(^3F)$ and we already know $E(^3H)!$

So
$$
E(^1I) = \langle ||3\alpha 3\beta|| \rangle
$$

\n $E(^3H) = \langle ||3\alpha 2\alpha|| \rangle$
\n $E(^3F) = \langle ||3\alpha 0\alpha|| \rangle + \langle ||2\alpha 1\alpha|| \rangle - E(^3H)$
\n $E(^1G) = \langle ||3\alpha 1\beta|| \rangle + \langle ||3\beta 1\alpha|| \rangle + \langle ||2\alpha 2\beta|| \rangle - E(^1I) - E(^3H)$
\n $E(^1D) = \langle ||3\alpha - 1\beta|| \rangle + \langle ||3\beta - 1\alpha|| \rangle + \langle ||2\alpha 0\beta|| \rangle + \langle ||2\beta 0\alpha|| \rangle$
\n $+ \langle ||\alpha 1\beta|| \rangle - E(^1I) - E(^1G) - E(^3H) - E(^3F)$
\n $E(^3P) = \langle ||3\alpha - 2\alpha|| \rangle + \langle ||2\alpha - 1\alpha|| \rangle + \langle ||\alpha 0\alpha|| \rangle - E(^3H) - E(^3F)$
\n $E(^1S) = \text{sum of seven } \langle || || \rangle - \text{sum of six } E(^{2S+1}L)$

F)

 $\frac{1}{2}$ $\frac{1}{2}$

ready now next lecture

This seems exceptionally laborious, but it is much easier than:

- * generating each $|LM_L = L \, SM_S = S\rangle$ eigen-state as an explicit linear combination of Slater determinants
- * then calculating matrix elements of e^2/r_{ii} , because there are many nonzero offdiagonal matrix elements between Slater determinants in the same $M_L M_S$ box.

Here is the final result for the energies of all of the $(nf)^{2.2S+1}L$ terms:

$$
E = E^{(0)} + E^{(1)} + E^{(2)}
$$

\n
$$
E^{(0)} = \text{sum of orbital energies from } \mathbf{h}^{(0)} = -\frac{Z^2 R}{n^2} = \varepsilon_{n\ell}
$$

\n
$$
E^{(1)} = \langle e^2/r_{n\ell} \rangle + \langle \mathbf{H}^{SO} \rangle
$$

\n
$$
= \sqrt{\frac{\text{Bare nucleus}}{\text{hydrogenic orbital energy}}}
$$

 $\epsilon_{n\ell}$ Bare nucleus
hydrogenic orbital
energy — or partly shielded by filled shells.

 $E^{(2)} = \left(\text{inttra configurational spin-orbit}\right) + \left(\text{intter configurational e^2/r_{ij} }\right)$

Configuration Interaction

For nf^2	shielded by all filled subshells	shielded by subshells	small
1	$2\varepsilon_{\text{nf}} + F_0(nf^2) + 25F_2(nf^2) + 9F_4(nf^2) + F_6(nf^2)$		
3	3	$2\varepsilon_{\text{nf}} + F_0 - 25F_2 - 51F_4 - 13F_6$	
1	$2\varepsilon_{\text{nf}} + F_0 - 30F_2 + 97F_4 + 78F_6$		
3	F	$2\varepsilon_{\text{nf}} + F_0 - 10F_2 - 33F_4 - 286F_6$	
1	1	$2\varepsilon_{\text{nf}} + F_0 + 19F_2 - 99F_4 + 715F_6$	
1	1	$2\varepsilon_{\text{nf}} + F_0 + 45F_2 + 33F_4 - 1287F_6$	
1	1	$2\varepsilon_{\text{nf}} + F_0 + 60F_2 + 198F_4 + 1716F_6$	
1	1	2	
1	2	$\varepsilon_{\text{nf}} + 60F_2 + 198F_4 + 1716F_6$	

(there is NO center of Gravity Rule for degeneracy weighted *L*-*S* terms)

- Now it is easy to show that all F_k 's are > 0 and $F_k \gg \mathbf{E}_{k+2}$ etc. (by roughly a factor of 10 per step in k).
- From this we get an **empirical rule** (empirical because we expect that contributions to $E(L, S)$ from F_4 and F_6 can be ignored).

Lowest *E* of all *L–S* terms is the one with

- * MAXIMUM *S*
- * of those with Maximum *S*, lowest is the one with MAXIMUM *L*.

These are Hund' s **first** and **second** (of three) rules.

Note also that Hund's rules make no predictions about the energy order of *L-S* terms except for the identity of the single, lowest energy *L-S* term.

Non-Lecture

There are several interesting problems also solved by this e^2/r_{ii} formalism.

1. The energy splittings between and the Slater determinantal characters of two or more *L*,*S* terms of the same *L* and S that belong to the same electronic configuration

e.g. $d^3 \rightarrow$ two ²D terms see pages 47-50 of Golding for 2×2 secular determinant for ²D of d^3

2. matrix elements of e^{2}/r_{ij} between same–*L*,*S* terms that belong to two different configurations choose any pair of

e.g.
$$
\text{nd}^2 \qquad \begin{array}{l} {^{1}S, ^{3}P, ^{1}D, ^{3}F, ^{1}G} \\ \text{ndn'd} \end{array} \begin{array}{l} {^{1}S, ^{3}P, ^{1}D, ^{3}F, ^{1}G} \\ {^{3}S, ^{1}P, ^{3}D, ^{1}F, ^{3}G} \end{array} \begin{array}{l} \text{no Pauli restrictions} \end{array}
$$

orthogonal combinations of Slaters. What you choose ¹ determines the values of ³ the off-diagonal matrix *S*, elements but not the eigenenergies

So, for L-S terms that belong to the nd2 configurations, there will be

$$
{}^{1}S\sim^{1}S
$$

$$
{}^{3}P\sim^{3}P
$$

$$
{}^{1}D\sim^{1}D
$$

$$
{}^{3}F\sim^{3}F
$$

$$
{}^{1}G\sim^{1}G
$$

interconfigurational interaction matrix elements and each of these 5 interaction matrix elements will NOT be of the same magnitude. There will be different Configuration Interaction energy shifts for the various *L-S* terms in a configuration.

Knowing the single configuration expected pattern of *L*-*S* states (energies and other properties) enables detection of local inter-configuration perturbations. Predicted patterns are EVERYTHING to an experimentalist!

MIT OpenCourseWare <https://ocw.mit.edu/>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: [https://ocw.mit.edu/terms.](https://ocw.mit.edu/terms)