
 

 

 
 

 
   

   

   
  

 

 

  
 

   
  

 
 
   
  

  
  

 

 

 
 

  
    

 

5.73 Lecture #34 34 - 1 
e2/rij and Slater Sum Rule Method 

LAST TIME: 1. The L2,S2 matrix method for setting up |NLMLSMS〉 many-
electron basis states in terms of linear combination of Slater 
determinants L2 → L+L− 

* ML = 0, MS = 0 block: S2 → S+S− 

* diagonalize S2 (singlets and triplets) 
* diagonalize L2 in same basis that diagonalizes S2 

[Recall: to get matrix elements of L2, first evaluate L2 ψ i 
and then left multiply by ] 

2. coupled representations |nj 
ψ
ω
j 

ℓs〉 and |NJLSMJ〉 
3. Projection operators: automated projection of L2 

eigenfunctions 
* remove unwanted L″ part 
* preserve normalization of wanted L′ part 
* remove overlap factor 
* easy to write computer program that automates the 
projection method 

TODAY: 

1. Slater Sum Rule Trick (based on trace invariance): MAIN IDEA OF LECTURE. 

2. Evaluate ∑"$# "!/$"# matrix elements (tedious, but good for you) 
[1/$"# is a 2 − "% operator that involves spatial coordinates only, scalar with 
respect to J, L, and S]. 

* multipole expansion of charge distribution due to “other electrons”
* matrix element selection rules for "!/$"# in both Slater determinantal and 
many-"% basis sets 
* Gaunt Coefficients ()&) (tabulated) and Slater-Condon (Fk, Gk) Coulomb and

' Exchange parameters. Because of the sum rule, can evaluate most 〈,- . . ,-〉(!"
' ' and 〈,- . . -,〉 type matrix elements and never need to evaluate 〈,- . . )0〉-type (!" (!" 

matrix elements except when the configuration includes two same-L,S terms. 

3. Apply Sum Rule Method
4. Hund’s 1st and 2nd Rules 
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5.73 Lecture #34 34 - 2 
1. Slater’s Sum Rule Method 

It is almost always possible to evaluate e2/rij matrix elements without solving for all
|LMLSMS⟩ basis states 

* trace of any Hermitian matrix, expressed in ANY representation, is the sum of the 
eigenvalues of that matrix (thus invariant to unitary transformation) 

* ∑"$# #!/%"# and every scalar operator with respect to &' (or ,-, /') has non-zero matrix 
elements diagonal in J and MJ (or L and ML) and independent of MJ (or ML,MS) 

[W-E Theorem: J is the GENERIC ANGULAR MOMENTUM with respect to which 
e2/rij is classified] 

Recall from definition of r12, that e2/rij is a scalar operator with respect to J1, 2-, 31 but 
not with respect to ji or 4i. 

Interelectronic Repulsion: ∑e2 rij
i > j 

* destroys the single-electron orbital approximation ∣nℓ�〉 for electronic 
structure calculations 
* “correlation energy,” “shielding”>

e1 
− ! r12 

r !1 
e1
−  at (r1,θ1,φ1) 

e2 
− 

• 

! r2 

! 

e2 
−  at (r2 ,θ2,φ2 ) 

r12 = 
! r2 − r ! 1 

Scalar with respect 
to J, L, S, si but 2 2 
not ji, ℓi. Do you r12 = r1

2 − 2r1 ⋅ r2 + r2 
know why? 

⎡
⎣ 

! ! r12 = ⎢r1
2 + r2

2 − 2 cos(r1,r2 )r1 r2 
⎤
⎦⎥ 
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5.73 Lecture #34 34 - 3 
⎛ r 

< 

r 
> 

⎞ 
⎟
⎠

expand r−1 as power series in 
12 ⎜

⎝ 

where is the smaller of 
1 2 

the larger ri is seeing the(integrals evaluated in 2 regions: r1 < r2, r2 < r1) multipoles of the smaller rj 

rrr ,
< 

⎡see Eyring, Walter, and Kimball, “Quantum Chemistry”, 
pages 369-371 and, for relationship between Legendre 

polynomials and Yℓ 
m (θ,φ),  pages 52-59. 

⎤ 
⎥ 
⎥ 
⎥⎦ 

⎢ 
⎢ 
⎢⎣ 

lengthy algebra 

will evaluate for orbitals occupied by ith e– 

2n-pole moment (n=0 monopole, n=1 dipole,…) 

1 

rij 
= 

n=0 

∞ 

∑ 
m= − n 

n 

∑ 
4π 

2n + 1 
⎛ 
⎝ 

⎞ 
⎠ 
r< 
n 

r> 
n+1 Yn 

m θ i ,φ i( ) Yn 
m θ j ,φ j( )[ ]* 

angular momenta 

multipole 
expansion 

1 r< 

r r>> 

magnitude n, projection mconvergent 
series 

not principal scalar product of 2 angular momenta, one
q.n.! n

⎛ ⎞ for i-th particle, one for j-th 

⎝⎜ ⎠⎟ 
* converts m to –m 

An n-pole charge distribution is an n-th rank tensor with 2n+1 
components. 

No dependence on electron spin, so 1/rij is scalar with respect to S, si ,  s j. 

⎤⎡ 
mY (θ i ,φi ) = θ i ,φi ℓ i = n, mℓ i 

= m n 
"$$$$$# 

mindices of Yn 

⎢ 
⎢ 
⎢
⎣ 

⎥ 
⎥ 
⎥
⎦ 
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5.73 Lecture #34 34 - 4 

The reason for this rather complicated looking expansion is that it is well 
suited for integrals over atomic orbitals which are expressed in terms of 
ri, θi, φi, which are the coordinates of the i-th e– with respect to the center 
of symmetry (nucleus) rather than the other e–. It enables use of atomic 
orbital basis states. Otherwise the 1/rij integrals would be nightmares. 

mY (θ ,φ) = θ ,φ n = ℓ,m = mℓn 

Selection rules for matrix elements: 

m mℓ imi ℓ′ imi ′ ℓ′ jm′ jYn ℓ jmj Yn 

not principal q. n. 

≤ n , ∆ mℓi = m, ∆ msi 
= 0⎧∆ ℓ i⎪orbitals ⎨ ≤ n , ∆ mℓ j = −m, ∆ msj 
= 0⎪∆ ℓ j⎩ 

term in multipole expansion 
triangle rule, ≤ n ≤ ℓ i + ℓ′ iℓ i − ℓ′ i 

(non-zero for steps in n of an even number because of parity) 

! overall: ∆L = 0, ∆S = 0, ∆ML = 0, ∆MS = 0, and independent of ML, 
MS. Can use any ML, MS Slater determinant from the box diagram. 

It is also clear how to evaluate the angular factors of the atomic orbital matrix 
elements using 3-j coefficients. Special tables of “Gaunt Coefficients” (also 
Condon and Shortley pages 178-179, Golding, page 41). 
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5.73 Lecture #34 34 - 5 
general 1/r12 matrix element (non-zero matrix elements of the 1/r12 operator follow 
the ∆s-o = 0, 1, and 2 spin-orbital selection rule for change in spin-orbitals) 

e2
– 

1 1ab cd = ab cd − ab dc1 r12 
– r12 r12e1 

1ab cd = δ(ms ,ms )δ(m ,m )δ(mℓ + m ,mℓ + m ) × 
a c sb sd a ℓb c ℓdr12 

1/r12 does not operate 1/r12 scalar with respect** on spin coodinates ** to L̂12 = ℓ̂1 + ℓ̂ 2 (can't change ML ) 

∑
∞ 

k kc (ℓ m ,ℓ m )c (ℓbmℓb ,ℓ d m ) × Rk (n ℓ nbℓbn ℓ nd ℓ d )a ℓa c ℓc ℓd a a c ck=0! 
e1
– e2

– 

tensor rank for radial factor 
product of AOs GAUNT COEFFICIENTS — A “reduced matrix 

ANGULAR FACTOR OF element” because all moccupied by e – #1 INTEGRAL 
quantum numbers aremust be same 

gone.
as for e – # 2 for scalar 

product of two 
n-th rank tensors 

1/2 
⎡ 2ℓ′ +1⎤k kℓℓ′ Akℓ′ℓc (ℓmℓ ,ℓ′mℓ′ ) ≡ 
⎣⎢ 2ℓ +1 ⎦⎥ 

A000 mℓ −mℓ ′ ,mℓ ′ −mℓ 
tabulated Clebsch-Gordan coefficients 

that result from integral over 
the product of three spherical 
harmonics — one from 
operator, two from orbitals 

triangle rule: ℓ − ℓ′ ≤ k ≤ ℓ + ℓ′ 
kℓℓ′ ℓ + ℓ′ + k =  even (from properties of A000 ) (including parity) 
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5.73 Lecture #34 34 - 6 
e1 
−  integral m + m = m′restrictions on k and m: ℓ1 ℓ1 

m n1 ′ℓ′ 1mℓ ′ 1Ykn1ℓ1mℓ1 

triangle rule 

For intra-configuration matrix elements, Rk(abcd) has an especially simple form 
(because the same one or two orbitals appear in both the bra and in the ket). 

Rk (ab, ab) ≡ Fk ( a,b) ⎫⎪
⎬“Slater − Condon” parameters

Rk (ab,ba) ≡ Gk (a,b)⎪ (these are reduced matrix elements dependent only on ℓa,⎭ ℓb, ℓc, ℓd and not on any of the mℓ quantum numbers.) All 
L-S states that belong to the same configuration are 
expressed in terms of the same set of Fk, Gk parameters. 

spins must match or 
K term will vanish2e (This is how singlet andab ab = J (a,b) − δ(ms ,msb 

)K(a,b) triplet states have different
a E even though 1/rij does notr12 DIRECT EXCHANGE operate on the spin factor.) 

2e k kJ (a,b) ≡ ab ab = ∑
∞ 

c (ℓ m ,ℓ m )c (ℓ m ,ℓ m ) × F k (n ℓ ,n ℓ )a ℓ a ℓ b ℓ b ℓ a a b b a a b br k=012 

ak (ℓamℓa 
,ℓbmℓb 

⎡∫∫ a *(1)a(1) ̂  
1 
dτ

2 
⎤) Opb *(2)b(2)dτ⎣ ⎦ 

classical charge distributions 

2e
K (a,b) ≡ ab ba = δ(m ,m )∑

∞ 

⎡ck (ℓ m ,ℓ m )⎤2 

Gk (n ℓ ,n ℓ )s s a ℓ b ℓ a a b b a b ⎣⎢ a b ⎦⎥r k=012 

bk (ℓamℓa 
,ℓbmℓb ) 

a *(1)b(1) ̂  dτ ⎤Opa(2)b *(2)dτ⎡∫∫ ⎣ 1 2 ⎦ 
something not classical! 

for special cases, such as nd2, we have the simplified result that naℓa = nbℓb 
and Fk = Gk 

Now we are ready to set up tables of ck (or, more conveniently, ak and bk) to evaluate 
the e2/rij matrix. 
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5.73 Lecture #34 34 - 7 
Easy example: nf2 (recall that L-S terms of f2 are 1I, 3H, 1G, 3F, 1D, 3P, 1S) 

1I and 3H are the only L-S states from the f2 

configuration that are represented by a single⎫ Slater determinant — extremes of the ML,MS box1I 60 = 3α3β ⎪ diagram.⎬ [You really do not want to calculate off-diagonal 
matrix elements of a two-electron operator if you

3H 51 = 3α2α ⎪⎭ can help it!] 
ˆ ˆSince e2/rij is a scalar operator with respect to L, S, Ĵ , matrix elements are ML, MS, 

and MJ independent — so we can use any ML,MS component to evaluate the matrix 
element — whichever is most convenient! 

= ∑ ck (33,33)c (33,33 (nf ,nf ) − δ α( ,β )∑ [c (33,33)]2 Gk (nf ,nf )e2 1I
e1 
− 

k
e2 
− 

)Fk k1I 
k = 0,2,4,6 ℓmℓ" kr12 

= 0 Fk(nf2)2ℓ one spin is �, 

= ∑ [ck (33,33)]2 Fk (nf ,nf ) other spin is � 

k = 0,2, 4,6 e1 
− ,e2 

−− ,e1 
− −, e2 

−e1 e22e k k k3 H 3 H = ∑ {[c (33,33)c (32,32)]F k (nf ,nf ) − [c (33,32)]2 

Gk (nf ,nf )}
r12 k=0 ,2 ,4 ,6 

e1 
− e2 

− both spins α 

Fk (nf 2 )
(α,α) (β,β) 

Use table of ck in Golding (page 41)/C&S handout (C&S page 179). 

Note that [1/(7361•64)]1/2 is implicit after the first entry for f2, k = 6. 
Here is where everyone makes mistakes! 

k = 0 2 4 6 

ck(33,33) 1 –1/3 1/11 –[1/7361•64]1/2 

ck(32,32) 1 0 –7/33 +[36/7361•64]1/2 

ck(33,32) 0 +1/3 –301/2/33 +[7/7361•64]1/2 

Dk 1 225 1089 = 332 7361•64 

convenient 
factor C&S Table: the number listed goes inside the 

SQRT replacing the numerator in the first row. 
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5.73 Lecture #34 34 - 8 
Dk is a factor that simplifies the expressions. Each term has the form Fk/Dk. Call 
this ratio Fk [notice Fk vs. Fk]. Get simpler looking expressions when you replace Fk 

by DkFk (Dk appears in denominators of ck as […/Dk]1/2 ) 

Always have the
2e ⎛ 1⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ product of two factors of1I 1I = F 0 + ⎠⎟ F

2 + ⎠⎟ F 4 + ⎠⎟ F
6 

⎝⎜ 9 ⎝⎜121 ⎝⎜ 7361 ⋅64 ck. Thus Fk gets dividedr12 
by Dk to yield Fk. 

= F0 + 25F2 + 9F4 + F6 

2e ⎡⎛ 1⎞ )2 ⎤ ⎡⎛ 1 ⎞⎛ −7⎞ 30 ⎤ ⎡ −6 − 7 ⎤3 H 3 H = F 0 + ⎢⎝⎜− ⎠⎟
( )0 − (1 3 ⎥ F2 + ⎢⎝⎜ ⎠⎟⎜ ⎠⎟ − ⎥ F4 + ⎢ ⎥ F 6 

⎝⎣ 3 ⎦ ⎣ 11 33 33 ⋅ 33⎦ ⎣7361 ⋅64 ⎦r12 

1 51 −13
F2 − F6= F 0 − F 4 

9 )2 7361⋅ 64( 33 
= F0 − 25F2 − 51F4 − 13F6 

A lot of bookkeeping, but it's possible to learn how to use tables of ck, ak, bk, and Dk, 
except it is much more work for f3 than for f2 (but the job is not yet complete for the 
L-S terms beyond 1I and 3H! 

SUM RULE METHOD: 

Basic idea is that the sum of all the diagonal elements in the single Slater determinant 
basis set within an ML, MS box is equal to the sum of the eigenvalues! 

Look at the ML = 3,MS = 1 box: 3α0α and 2α1α . This box generates 3H 31 

and 3F 31 , but the trace is E(3H) + E(3F) and we already know E(3H)! 

So E( 1I ) = 3α3β 

E( 3H ) = 3α2α 

E( 3F) = 3α0α + 2α1α − E( 3H ) 
E( 1G) = − E( 1I ) − E( 3H )3α1β + 3β1α + 2α2β 

E( 1D) = 3α −1β + 3β −1α + 2α0β + 2β0α 

− E( 1I ) − E( 1G) − E( 3H ) − E( 3F)+ 1α1β 

E( 3P) = 3α − 2α + 2α −1α + 1α0α − E( 3H ) − E( 3F) 
E( 1S) = sum of seven – sum of six E( 2S+1L) 
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5.73 Lecture #34 34 - 9 
This seems exceptionally laborious, but it is much easier than: 

* generating each |LML = L SMS = S〉 eigen-state as an explicit linear combination 
of Slater determinants 

* then calculating matrix elements of e2/rij, because there are many nonzero off-
diagonal matrix elements between Slater determinants in the same ML,MS box. 

Here is the final result for the energies of all of the (nf)2 2S+1L terms: 

E = E (0) + E (1) + E (2) 

Z2R Bare nucleus 
E (0) = sum of orbital energies from h(0) = − = ε

2 nℓ hydrogenic orbitaln 
energy — or partly

E (1) = 2 HSO e r +
ij shielded by filled shells."#$ "#$ 

ready now next 
lecture 

E (2) 2= (intraconfiguraional spin-orbit) + (interconfigurational e r )ij 

Configuration Interaction 

shielded by shielded by
For nf2 

all filled same 
subshells subshell 

1I 2εnf + F0 (nf 2 ) + 25F2 (nf 2 ) + 9F4 (nf 2 ) + F6 (nf 2 ) 
lowest3H 2εnf + F0 – 25F2 – 51F4 – 13F6 

1G 2εnf + F0 – 30F2 + 97F4 + 78F6 

might3F 2εnf + F0 – 10F2 – 33F4 – 286F6 have been 
lowest 

1D 2εnf + F0 + 19F2 – 99F4 + 715F6 

also might3P 2εnf + F0 + 45F2 + 33F4 – 1287F6 
have been 
lowest1S 2εnf + F0 + 60F2 + 198F4 + 1716F6 

shielded-core intraconfiguration L-S term splittings 
configurational 

energy 

(there is NO center of Gravity Rule for degeneracy weighted L-S terms) 
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5.73 Lecture #34 34 - 10 
Now it is easy to show that all Fk ’s are > 0 and Fk ≫>Fk+2 etc. (by roughly a factor 

of 10 per step in k). 

From this we get an empirical rule (empirical because we expect that 
contributions to E(L,S) from F4 and F6 can be ignored). 

Lowest E of all L–S terms is the one with 

* MAXIMUM S 
* of those with Maximum S, lowest is the one with MAXIMUM L. 

These are Hund’s first and second (of three) rules. 

Note also that Hund’s rules make no predictions about the energy order of L-S terms 
except for the identity of the single, lowest energy L-S term. 
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5.73 Lecture #34 34 - 11 

Non-Lecture 

There are several interesting problems also solved by this e2/rij formalism. 

1. The energy splittings between and the Slater determinantal characters of two or 
more L,S terms of the same L and S that belong to the same electronic 
configuration 

e.g. d3 → two 2D terms 
see pages 47-50 of Golding for 2 × 2 secular determinant for 2D of d3 

2. matrix elements of e2/rij between same–L,S terms that belong to two different 
configurations choose any pair of 
e.g. nd2 1S,3P,1D,3F,1G orthogonal combinations of 

n d′ 
Slaters. What you choose 1S,3P,1D,3F,1G⎧⎪

⎨ 
⎫⎪
⎬ determines the values ofnd no Pauli restrictions the off-diagonal matrix 3S,1P,3D,1F, 3G⎪⎩ ⎪⎭ elements but not the eigen-

energies 

So, for L-S terms that belong to the nd2 configurations, there will be 
1S~1S 
3P~3P 
1D~1D 
3F~3F 
1G~1G 

interconfigurational interaction matrix elements and each of these 5 interaction 
matrix elements will NOT be of the same magnitude. There will be different 
Configuration Interaction energy shifts for the various L-S terms in a 
configuration. 

Knowing the single configuration expected pattern of L-S states (energies and 
other properties) enables detection of local inter-configuration perturbations. 
Predicted patterns are EVERYTHING to an experimentalist! 
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