#### <u>e<sup>2</sup>/r<sub>ii</sub> and Slater Sum Rule Method</u>

| <u>LAST TIME:</u> | 1.       | The $L^2$ , $S^2$ matrix method for setting up $ NLM_LSM_S\rangle$ many-<br>electron basis states in terms of linear combination of Slater<br>determinants $L^2 \rightarrow L_+L$<br>* $M_L = 0$ , $M_S = 0$ block: $S^2 \rightarrow SS$                                                                                                                                                                                                                                                                                                                                       |
|-------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 2.<br>3. | * diagonalize $S^2$ (singlets and triplets)<br>* diagonalize $L^2$ in same basis that diagonalizes $S^2$<br>[Recall: to get matrix elements of $L^2$ , first evaluate $L^2     \Psi_i    \rangle$<br>and then left multiply by $\langle    \Psi_i      $ ]<br>coupled representations $ nj \otimes l \rangle$ and $ NJLSM_J\rangle$<br>Projection operators: automated projection of $L^2$<br>eigenfunctions<br>* remove unwanted $L''$ part<br>* preserve normalization of wanted $L'$ part<br>* remove overlap factor<br>* easy to write computer program that automates the |
|                   |          | projection method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### TODAY:

- 1. Slater Sum Rule Trick (based on trace invariance): MAIN IDEA OF LECTURE.
- 2. Evaluate  $\sum_{i>j} e^2/r_{ij}$  matrix elements (tedious, but good for you)  $[1/r_{ij}$  is a  $2 e^-$  operator that involves spatial coordinates only, scalar with respect to **J**, **L**, and **S**].

\* multipole expansion of charge distribution due to "other electrons" \* matrix element selection rules for  $e^2/r_{ij}$  in both Slater determinantal and many- $e^-$  basis sets \* Gaunt Coefficients ( $c^k$ ) (tabulated) and Slater-Condon ( $F^k$ ,  $G^k$ ) Coulomb and Exchange parameters. Because of the sum rule, can evaluate most  $\langle ab | \frac{1}{r_{ij}} | ab \rangle$ and  $\langle ab | \frac{1}{r_{ij}} | ba \rangle$  type matrix elements and never need to evaluate  $\langle ab | \frac{1}{r_{ij}} | cd \rangle$ -type matrix elements except when the configuration includes two same-L,S terms.

- 3. Apply Sum Rule Method
- 4. Hund's 1<sup>st</sup> and 2<sup>nd</sup> Rules

#### 1. Slater's Sum Rule Method

It is almost always possible to evaluate  $e^2/r_{ij}$  matrix elements without solving for all  $|LMLSMS\rangle$  basis states

\* trace of any Hermitian matrix, expressed in ANY representation, is the sum of the eigenvalues of that matrix (thus invariant to unitary transformation)

\*  $\sum_{i>j} e^2/r_{ij}$  and every scalar operator with respect to  $\hat{f}$  (or  $\hat{L}, \hat{S}$ ) has non-zero matrix elements diagonal in J and M<sub>J</sub> (or L and M<sub>L</sub>) and independent of M<sub>J</sub> (or M<sub>L</sub>,M<sub>S</sub>)

[W-E Theorem: J is the GENERIC ANGULAR MOMENTUM with respect to which  $e^2/r_{ij}$  is classified]

Recall from definition of r12, that  $e^{2}/r_{ij}$  is a scalar operator with respect to  $\hat{J}$ ,  $\hat{L}$ ,  $\hat{S}$  but not with respect to  $\mathbf{j}_i$  or  $\boldsymbol{\ell}_i$ .

Interelectronic Repulsion:  $\sum_{i>i} e^2 / r_{ij}$ 

to

\* destroys the single-electron orbital approximation  $|n\ell\lambda\rangle$  for electronic structure calculations

\* "correlation energy," "shielding"□



$$\vec{r}_{12} = \vec{r}_2 - \vec{r}_1$$
Scalar with respect  
to **J**, **L**, **S**, **s**<sub>i</sub> but  
not **j**<sub>i</sub>,  $\ell_i$ . Do you  
know why?  
$$r_{12}^2 = r_1^2 - 2r_1 \cdot r_2 + r_2^2$$

$$r_{12} = \left[r_1^2 + r_2^2 - 2\left|r_1\right| \left|r_2\right| \cos\left(\vec{r}_1, \vec{r}_2\right)\right]^{1/2}$$

updated August 28, 2020 @ 11:19 AM

expand  $r_{12}^{-1}$  as power series in  $\left(\frac{r_{<}}{r_{>}}\right)$ where  $r_{<}$  is the smaller of  $|r_{1}|, |r_{2}|$ 



An n-pole charge distribution is an n-th rank tensor with 2n+1 components.

No dependence on electron spin, so  $1/r_{ij}$  is scalar with respect to S,  $s_i$ ,  $s_j$ .

$$Y_{n}^{m}(\boldsymbol{\theta}_{i},\boldsymbol{\phi}_{i}) = \left\langle \boldsymbol{\theta}_{i},\boldsymbol{\phi}_{i} \middle| \ell_{i} = n, m_{\ell_{i}} = m \right\rangle$$
  
indices of  $Y_{n}^{m}$ 

updated August 28, 2020 @ 11:19 AM

The reason for this rather complicated looking expansion is that it is well suited for integrals over atomic orbitals which are expressed in terms of  $r_i$ ,  $\theta_i$ ,  $\phi_i$ , which are the coordinates of the i-th e<sup>-</sup> with respect to the center of symmetry (nucleus) rather than the other e<sup>-</sup>. It enables use of atomic orbital basis states. Otherwise the  $1/r_{ij}$  integrals would be nightmares.

$$Y_n^m(\boldsymbol{\theta},\boldsymbol{\phi}) = \left\langle \boldsymbol{\theta},\boldsymbol{\phi} \middle| n = \ell, m = m_{\ell} \right\rangle$$

Selection rules for matrix elements:

$$\langle \ell_{i}m_{i}|Y_{n}^{m}|\ell_{i}'m_{i}'\rangle \langle \ell_{j}m_{j}|Y_{n}^{m}|\ell_{j}'m_{j}'\rangle$$

$$\begin{array}{c} & \text{not principal q. n.} \\ \hline \text{not principal q. n.} \\ \hline \text{orbitals} \begin{cases} |\Delta \ell_{i}| \leq \underline{n}, \quad \Delta m_{\ell_{i}} = m, \quad \Delta m_{s_{i}} = 0 \\ |\Delta \ell_{j}| \leq \underline{n}, \quad \Delta m_{\ell_{j}} = -m, \quad \Delta m_{s_{j}} = 0 \\ \hline \text{triangle rule}, |\ell_{i} - \ell_{i}'| \leq n \leq \ell_{i} + \ell_{i}' \end{cases}$$

(non-zero for steps in n of an even number because of parity)

overall:  $\Delta L = 0$ ,  $\Delta S = 0$ ,  $\Delta M_L = 0$ ,  $\Delta M_S = 0$ , and independent of  $M_L$ ,  $M_S$ . Can use any  $M_L$ ,  $M_S$  Slater determinant from the box diagram.

It is also clear how to evaluate the angular factors of the atomic orbital matrix elements using 3-j coefficients. Special tables of "Gaunt Coefficients" (also Condon and Shortley pages 178-179, Golding, page 41).

$$\left\langle \left\| \underbrace{ab}_{e_{1}}^{e_{2}} \| r_{12} \| cd \right\| \right\rangle = \left\langle ab \left| \frac{1}{r_{12}} \right| cd \right\rangle - \left\langle ab \left| \frac{1}{r_{12}} \right| dc \right\rangle$$

$$\left\langle ab \left| \frac{1}{r_{12}} \right| cd \right\rangle = \underbrace{\delta(m_{s_{a}}, m_{s_{c}}) \delta(m_{s_{b}}, m_{s_{d}}) \delta(m_{\ell_{a}} + m_{\ell_{b}}, m_{\ell_{c}} + m_{\ell_{d}}) \times \frac{1}{r_{12} \operatorname{scalar}} \operatorname{with respect}_{\operatorname{to} \ \hat{L}_{12} = \hat{\ell}_{1} + \hat{\ell}_{2} \left(\operatorname{can't change} M_{L}\right)} \right\rangle$$
tensor rank for
$$\underbrace{c^{k}(\ell_{a}m_{\ell_{a}}, \ell_{c}m_{\ell_{c}}) c^{k}(\ell_{b}m_{\ell_{b}}, \ell_{d}m_{\ell_{d}})}_{\operatorname{GAUNT COEFFICIENTS}} \times \underbrace{c^{k}(m_{a}\ell_{a}n_{b}\ell_{b}n_{c}\ell_{c}n_{d}\ell_{d})}_{\operatorname{radial factor}}$$

product of AOs occupied by e<sup>-</sup>#1 must be same

as for e<sup>-</sup> #2 for scalar product of two n-th rank tensors

ANGULAR FACTOR OF INTEGRAL

radial factor A "reduced matrix element" because all m quantum numbers are gone.

$$c^{k}\left(\ell m_{\ell},\ell' m_{\ell'}\right) \equiv \left[\frac{2\ell'+1}{2\ell+1}\right]^{1/2}$$

tabulated

 $A^{k\ell\ell'}_{000}A^{k\ell'\ell}_{m_\ell-m'_\ell,m'_\ell-m_\ell}$ 

Clebsch-Gordan coefficients that result from integral over the product of three spherical harmonics — one from operator, two from orbitals

(from properties of  $A_{000}^{k\ell\ell'}$ ) (including parity)

triangle rule:  $|\ell - \ell'| \le k \le \ell + \ell'$ 

$$\ell + \ell' + k = even$$

restrictions on k and m:

$$\begin{array}{c} e_{1}^{-} \text{ integral} & m_{\ell_{1}} + m = m_{\ell_{1}}' \\ \left\langle n_{1}\ell_{1}m_{\ell_{1}} \middle| Y_{k}^{m} \middle| n_{1}'\ell_{1}'m_{\ell_{1}}' \right\rangle \\ & \downarrow \\ \text{triangle rule} \end{array}$$

For <u>intra</u>-configuration matrix elements,  $R^k(abcd)$  has an especially simple form (because the same one or two orbitals appear in both the bra and in the ket).

$$R^{k}(ab, ab) \equiv F^{k}(a,b)$$

$$R^{k}(ab, ba) \equiv G^{k}(a,b)$$

$$(\text{these are reduced matrix elements dependent only on } \ell_{a}, \ell_{b}, \ell_{c}, \ell_{d} \text{ and not on any of the } m_{t} \text{ quantum numbers.} \text{ All } LS \text{ states that belong to the same configuration are expressed in terms of the same set of } F^{k}, G^{k} \text{ parameters.}$$

$$\left\langle \left| \left| ab \right| \left| \frac{e^{2}}{r_{12}} \right| \left| \left| ab \right| \right| \right\rangle = J(a,b) - \delta(m_{s_{a}}, m_{s_{b}}) K(a,b)$$

$$\text{DIRECT EXCHANGE} \quad \text{(This is how singlet and triplet states have different E even though 1/r_{ij} does not operate on the spin factor.)}$$

$$J(a,b) \equiv \left\langle ab \left| \frac{e^{2}}{r_{12}} \right| ab \right\rangle = \sum_{k=0}^{\infty} c^{k} \left( \ell_{a} m_{\ell_{a}}, \ell_{a} m_{\ell_{a}} \right) c^{k} \left( \ell_{b} m_{\ell_{b}}, \ell_{b} m_{\ell_{b}} \right) \times F^{k} \left( n_{a} \ell_{a}, n_{b} \ell_{b} \right)$$

$$a^{k} \left( \ell_{a} m_{\ell_{a}}, \ell_{b} m_{\ell_{b}} \right) = \int_{k=0}^{k} c^{k} \left( \ell_{a} m_{\ell_{a}}, \ell_{b} m_{\ell_{b}} \right) \left[ \iint_{k} a^{*}(1)a(1)\hat{\mathbf{Op}}a(2)b^{*}(2)d\tau_{1}d\tau_{2} \right]$$

$$K(a,b) \equiv \left\langle ab \right| \frac{e^{2}}{r_{12}} \right| ba \right\rangle = \delta\left( m_{s_{a}}, m_{s_{b}} \right) \sum_{k=0}^{\infty} \left[ c^{k} \left( \ell_{a} m_{\ell_{a}}, \ell_{b} m_{\ell_{b}} \right) \right]^{2} G^{k} \left( n_{a} \ell_{a}, n_{b} \ell_{b} \right)$$

$$\left[ \iint_{k} a^{*}(1)b(1)\hat{\mathbf{Op}}a(2)b^{*}(2)d\tau_{1}d\tau_{2} \right]$$

$$(\text{Intermediation of the states have different E even though 1/r_{i} does not operate on the spin factor.)$$

for special cases, such as  $nd^2,$  we have the simplified result that  $n_a\ell_a$  =  $n_b\ell_b$  and  $F^k$  =  $G^k$ 

Now we are ready to set up tables of  $c^k$  (or, more conveniently,  $a^k$  and  $b^k$ ) to evaluate the  $e^2/r_{ij}$  matrix.

Easy example: nf<sup>2</sup>

factor

$$\begin{vmatrix} {}^{1}I \ 60 \end{pmatrix} = \begin{vmatrix} 3\alpha 3\beta \end{vmatrix}$$
$$\begin{vmatrix} {}^{3}H \ 51 \end{pmatrix} = \begin{vmatrix} 3\alpha 2\alpha \end{vmatrix}$$

 ${}^{1}I$  and  ${}^{3}H$  are the only *L-S* states from the  $f^{2}$  configuration that are represented by a single Slater determinant — extremes of the  $M_{L}, M_{S}$  box diagram.

34 - 7

[You really do not want to calculate off-diagonal matrix elements of a two-electron operator if you can help it!]

Since  $e^2/r_{ij}$  is a scalar operator with respect to  $\hat{\mathbf{L}}$ ,  $\hat{\mathbf{S}}$ ,  $\hat{\mathbf{J}}$ , matrix elements are  $M_L$ ,  $M_S$ , and  $M_J$  independent — so we can use any  $M_L$ ,  $M_S$  component to evaluate the matrix element — whichever is most convenient!

$$\begin{pmatrix} 1 I \left| \frac{e^2}{r_{12}} \right| I \end{pmatrix} = \sum_{k=0,2,4,6} c^k (33,33) c^k (33,33) F^k (nf,nf) - \delta(\alpha,\beta) \sum_{k} \left[ c^k (33,33) \right]^2 G^k (nf,nf) \\ = \sum_{k=0,2,4,6} \left[ c^k (33,33) \right]^2 F^k (nf,nf) \\ \left[ c^k (33,33) \right]^2 F^k (nf,nf) \\ \left[ c^k (33,33) \right]^2 F^k (nf,nf) \\ \left[ c^k (33,33) c^k (32,32) \right] F^k (nf,nf) - \left[ c^k (33,32) \right]^2 G^k (nf,nf) \right] \\ \left[ c^k (33,33) c^k (32,32) \right] F^k (nf,nf) - \left[ c^k (33,32) \right]^2 G^k (nf,nf) \right] \\ \left[ c^k (nf^2) \right]$$

Use table of  $c^k$  in Golding (page 41)/C&S handout (C&S page 179).

Note that  $[1/(7361 \cdot 64)]^{1/2}$  is implicit after the first entry for  $f^2$ , k = 6. Here is where everyone makes mistakes!

|                | $\mathbf{k} = 0$ | 2    | 4              | 6                            |
|----------------|------------------|------|----------------|------------------------------|
| $c^{k}(33,33)$ | 1                | -1/3 | 1/11           | -[1/7361•64] <sup>1/2</sup>  |
| $c^{k}(32,32)$ | 1                | 0    | -7/33          | +[36/7361•64] <sup>1/2</sup> |
| $c^{k}(33,32)$ | 0                | +1/3 | $-30^{1/2}/33$ | $+[7/7361 \cdot 64]^{1/2}$   |
| $^{D_k}$       | 1                | 225  | $1089 = 33^2$  | 7361•64                      |
| convenient     |                  |      |                |                              |

C&S Table: the number listed goes inside the SQRT replacing the numerator in the first row.

### 34 - 8

 $D_k$  is a factor that simplifies the expressions. Each term has the form  $F^k/D_k$ . Call this ratio  $F_k$  [notice  $F^k$  vs.  $F_k$ ]. Get simpler looking expressions when you replace  $F^k$  by  $D_k F_k$  ( $D_k$  appears in denominators of  $c^k$  as [.../ $D_k$ ]<sup>1/2</sup>)

$$\left\langle {}^{1}I \left| \frac{e^{2}}{r_{12}} \right| {}^{1}I \right\rangle = F^{0} + \left( \frac{1}{9} \right) F^{2} + \left( \frac{1}{121} \right) F^{4} + \left( \frac{1}{7361 \cdot 64} \right) F^{6}$$
 Always have the product of two factors of  $c^{k}$ . Thus  $F^{k}$  gets divided by  $D_{k}$  to yield  $F_{k}$ .  

$$= F_{0} + 25F_{2} + 9F_{4} + F_{6}$$

$$\left\langle {}^{3}H \left| \frac{e^{2}}{r_{12}} \right| {}^{3}H \right\rangle = F^{0} + \left[ \left( -\frac{1}{3} \right) (0) - \left( \frac{1}{3} \right)^{2} \right] F^{2} + \left[ \left( \frac{1}{11} \right) \left( \frac{-7}{33} \right) - \frac{30}{33 \cdot 33} \right] F^{4} + \left[ \frac{-6 - 7}{7361 \cdot 64} \right] F^{6}$$

$$= F^{0} - \frac{1}{9} F^{2} - \frac{51}{(33)^{2}} F^{4} \frac{-13}{7361 \cdot 64} F^{6}$$

$$= F_{0} - 25F_{2} - 51F_{4} - 13F_{6}$$

A lot of bookkeeping, but it's possible to learn how to use tables of  $c^k$ ,  $a^k$ ,  $b^k$ , and  $D_k$ , except it is much more work for  $f^3$  than for  $f^2$  (but the job is not yet complete for the *L*-*S* terms beyond <sup>1</sup>*I* and <sup>3</sup>*H*!

### **SUM RULE METHOD:**

Basic idea is that the sum of all the diagonal elements in the single Slater determinant basis set within an  $M_L$ ,  $M_S$  box is equal to the sum of the eigenvalues!

Look at the  $M_L = 3, M_S = 1$  box:  $||3\alpha 0\alpha||$  and  $||2\alpha 1\alpha||$ . This box generates  $||^3H 31\rangle$ and  $||^3F 31\rangle$ , but the trace is  $E(^3H) + E(^3F)$  and we already know  $E(^3H)!$ 

So 
$$E({}^{1}I) = \langle ||3\alpha 3\beta|| \rangle$$
$$E({}^{3}H) = \langle ||3\alpha 2\alpha|| \rangle$$
$$E({}^{3}F) = \langle ||3\alpha 0\alpha|| \rangle + \langle ||2\alpha 1\alpha|| \rangle - E({}^{3}H)$$
$$E({}^{1}G) = \langle ||3\alpha 1\beta|| \rangle + \langle ||3\beta 1\alpha|| \rangle + \langle ||2\alpha 2\beta|| \rangle - E({}^{1}I) - E({}^{3}H)$$
$$E({}^{1}D) = \langle ||3\alpha - 1\beta|| \rangle + \langle ||3\beta - 1\alpha|| \rangle + \langle ||2\alpha 0\beta|| \rangle + \langle ||2\beta 0\alpha|| \rangle$$
$$+ \langle ||1\alpha 1\beta|| \rangle - E({}^{1}I) - E({}^{1}G) - E({}^{3}H) - E({}^{3}F)$$
$$E({}^{3}P) = \langle ||3\alpha - 2\alpha|| \rangle + \langle ||2\alpha - 1\alpha|| \rangle + \langle ||1\alpha 0\alpha|| \rangle - E({}^{3}H) - E({}^{3}F)$$
$$E({}^{1}S) = \text{sum of seven } \langle || || \rangle - \text{sum of six } E({}^{2S+1}L)$$

This seems exceptionally laborious, but it is much easier than:

- \* generating each  $|LM_L = L SM_S = S\rangle$  eigen-state as an explicit linear combination of Slater determinants
- \* then calculating matrix elements of  $e^2/r_{ij}$ , because there are many nonzero offdiagonal matrix elements between Slater determinants in the same  $M_L, M_S$  box.

Here is the final result for the energies of all of the  $(nf)^{2 2S+1}L$  terms:

$$E = E^{(0)} + E^{(1)} + E^{(2)}$$

$$E^{(0)} = \text{ sum of orbital energies from } \mathbf{h}^{(0)} = -\frac{Z^2 R}{n^2} = \varepsilon_{n\ell}$$

$$E^{(1)} = \underbrace{\left\langle e^2 / r_{ij} \right\rangle}_{\text{ready now}} + \underbrace{\left\langle \mathbf{H}^{\text{SO}} \right\rangle}_{\text{next}}$$

Bare nucleus hydrogenic orbital energy — or partly shielded by filled shells.

 $E^{(2)} = (in traconfigurational spin-orbit) + (in terconfigurational <math>e^2/r_{ij})$ 

**Configuration Interaction** 

For 
$$nf^2$$
 shielded by  
all filled  
subshells  
<sup>1</sup>I  $2\varepsilon_{nf} + F_0(nf^2) + 25F_2(nf^2) + 9F_4(nf^2) + F_6(nf^2)$   
<sup>3</sup>H  $2\varepsilon_{nf} + F_0 - 25F_2 - 51F_4 - 13F_6 \leftarrow lowest$   
<sup>1</sup>G  $2\varepsilon_{nf} + F_0 - 30F_2 + 97F_4 + 78F_6$   
<sup>3</sup>F  $2\varepsilon_{nf} + F_0 - 10F_2 - 33F_4 - 286F_6 \leftarrow might$   
have been  
<sup>1</sup>D  $2\varepsilon_{nf} + F_0 + 19F_2 - 99F_4 + 715F_6$   
<sup>3</sup>P  $2\varepsilon_{nf} + F_0 + 45F_2 + 33F_4 - 1287F_6 \leftarrow also might$   
have been  
lowest  
<sup>1</sup>S  $2\varepsilon_{nf} + F_0 + 60F_2 + 198F_4 + 1716F_6$   
<sup>3</sup>hielded-core  
configurational  
energy

(there is <u>NO</u> center of Gravity Rule for degeneracy weighted *L*-*S* terms)

- Now it is easy to show that all  $F_k$ 's are > 0 and  $F_k \gg \mathbb{Z}_{k+2}$  etc. (by roughly a factor of 10 per step in k).
- From this we get an **empirical rule** (<u>empirical</u> because we expect that contributions to E(L,S) from  $F_4$  and  $F_6$  can be ignored).

Lowest E of all L-S terms is the one with

- \* MAXIMUM S
- \* of those with Maximum *S*, lowest is the one with MAXIMUM *L*.

# These are <u>Hund's</u> **first** and **second** (of three) <u>rules</u>.

Note also that Hund's rules make no predictions about the energy order of L-S terms <u>except</u> for the identity of the single, lowest energy L-S term.

#### Non-Lecture

There are several interesting problems also solved by this  $e^2/r_{ij}$  formalism.

1. The energy splittings between and the Slater determinantal characters of two or more L,S terms of the same L and S that belong to the same electronic configuration

e.g.  $d^3 \rightarrow \text{two } {}^2D \text{ terms}$ see pages 47-50 of Golding for 2 × 2 secular determinant for  ${}^2D \text{ of } d^3$ 

2. matrix elements of  $e^2/r_{ij}$  between same-L,S terms that belong to two different configurations choose any pair of

e.g. nd<sup>2</sup> 
$${}^{1}S, {}^{3}P, {}^{1}D, {}^{3}F, {}^{1}G$$
  
ndn'd  $\begin{cases} {}^{1}S, {}^{3}P, {}^{1}D, {}^{3}F, {}^{1}G \\ {}^{3}S, {}^{1}P, {}^{3}D, {}^{1}F, {}^{3}G \end{cases}$  no Pauli restrictions

choose any pair of orthogonal combinations of Slaters. What you choose determines the values of the off-diagonal matrix elements but not the eigenenergies

So, for L-S terms that belong to the nd2 configurations, there will be

$${}^{1}S \sim {}^{1}S$$
$${}^{3}P \sim {}^{3}P$$
$${}^{1}D \sim {}^{1}D$$
$${}^{3}F \sim {}^{3}F$$
$${}^{1}G \sim {}^{1}G$$

interconfigurational interaction matrix elements and each of these 5 interaction matrix elements will NOT be of the same magnitude. There will be different Configuration Interaction energy shifts for the various L-S terms in a configuration.

Knowing the single configuration expected pattern of L-S states (energies and other properties) enables detection of local inter-configuration perturbations. Predicted patterns are EVERYTHING to an experimentalist!

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.