5.73 Lecture #33 33 -1

L-S Terms via L2, S2 and Projection

LAST TIME:

* method of M;, Mg boxes. [For 3L states, cross out boxes starting from
both (M; =L, M¢=1) and (M; =L, M¢=0).]

* there must be a complete (2L + 1)(2S + 1) dimensionality for each L-S
term [# of boxes]

* n/? pattern

* (nf)?2 n'¢’ shortcut

* method of ladders plus orthogonality
TODAY:

L2, S?2 method to obtain | LM;SMg), especially for the M;,Mq boxes in which the
method of ladders plus orthogonality is most inconvenient: e.g, M; = 0,
Mg=0

* L2 > L,L_only for M} = 0 block. Every LS term in the

configuration is represented in this most evil block.

set up and diagonalize S2 — easy — by forming + linear

combinations

(singlet and triplet)

off - Ba  off + PBo

* transform L2 to singlet, triplet basis using the transformation that

diagonalizes S? (block diagonalization), then complete the
diagonalization of L2 by knowing (from crossing out boxes method)
the L2 eigenvalues: L(L + 1)

other, strong spin-orbit basis sets

Modern calculations use projection operators: designed to project away all
unwanted parts of y yet preserve normalization.
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Look at the M; = 0, Mg = 0 block of f2 and construct all L — S basis states. All
extant L-S terms of {2 are represented once in the M; = Mg = 0 block. Never try
to get to this block by ladders and orthogonality!

Vi :|305_3:B“
v, =|38-3¢|
Y =|2a-2p
v, =|20-2«x
ws =|la-1p]
Ve = lﬂ_la”
v, =008

Exploit cute trick that works especially well in the M; =0, Mg =0
block because many otherwise awful terms vanish.

This 1s for f2. Do d? in lecture

=1L+ %(L+L_ +L L, )=01"+ %(L+L_ +L,L_—[L,.L_])

|L,.L_|=2nL,
L'=L-nL +L,L_ (sameas L’ =L’ +AL_+L L,)

diagonal but nondiagonal
vanishes in
M,=0

So for the M; = 0 block only, can replace L? by L,L._ (or L._L,) and,
for Mg = 0 only, replace S? by S,S_(or S_S,).
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For f2:
S*|Boc~3p||=,S_|Bo.—3B][=.|[38 ~ 3| | = [3r ~ 3||+][38 ~ 30
L?|Bo.—3pf|= L, L_|Bo.—3p||= L, 6"|20. 3B =
6" [12- 61| o — 38|+ 12— 61" 2o — 28] |
= 6[|Bo: - 3|+ [20:— 28]

ignore
factors
of A2

etc.

y, =[Ba-3p] Sy, =y, +vy, L'y, =6y, +6y,

v, =|BB-3¢ Sy, =v, +y, L'y, =6y, +6y,

v, =[Ro-28| Sy, =y, +y, L'y, = 6y, +16y, + 10y,
v, =28 20 Sv,=y, +y, L'y, =6y, +16y, + 10y,
v, =|[la-1p] Sy, =y, +y, L'y, =10y, + 22y, +12vy,
v, =[1B-1c| SW =y + v, L'y, =10y, +22y, - 12y,
v, = 0o - 0 Sy, =0 L'y, =12y, — 12y, +24y,

l | 1
all easy require a bit more work

Now we know, for 2e-, S? can only have 242 and 0A42 eigenvalues (triplet
and singlet)

diagonalize S2 by inspection

T Y =2 v Vi, =27 (v - v
YV, = 2_1/2(1//3 + l//4) Y, = 2712 (l//3 — l//4)

v, =2 (W + ) v, =2 (W5 —v)
W4S = ll/7 - 'This also has

of—PBo form
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Confirm that these functions diagonalize S? and give correct values
of diagonal elements. Also, they give orthogonality for singlets with

triplets.
a diagonal element: <‘Iflt

Sy, )= <(WI+W2)‘52‘( )

——h2<( ) (2w, +2y, ) = lhz(2+2) 21

an off-diagonal element: <‘|’n SZ‘\V1S> <(\|11 +w2)’82‘( 1|12)>
%hz <( + \pz)(\pl +y, — \|12)> =0 as expected
also <\|11S Sz‘\uls> =
g2 =72 (2 1t
2 2t
2 O 3
0 Ls
0 2s
O 0 3s
0 )4s

What does L? look like when expressed in the basis set that diagonalizes

S2?
Ly, =2"1*[ 6y, +6y, +6y, +6y, |

(w2, )= —h [6+6]= 67

NONLECTURE
<w2tL2|1plt>:%h2< V|6, 6y, 6y, +6y, ) = —h2[6+6]=6h2
(v )= 2 (v v o)

%rﬂ(\p +y, |6y, +16y, + 10y, + 6y, + 16y, +10y, )
%h2(16+16) 167’
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L2=H%2 (6 6 0 1t
6 16 10 O 2t

0 10 22 3t

6 © 0 0 Ls

6 16 10 0 2s

() 0 10 22 242712 |35

0O 0 24272 24 4s

These 2 matrices are easier to diagonalize than the full 7 x 7 matrix, especially
because we know the eigenvalues in advance!

But our goal is actually the eigenvectors not the eigenvalues:

TRIPLETS 1*°H M =0,M = O> =h*30| "H 00 >
6 6 0Ya a
6 16 10]|b|=30/b
0 10 22Ac c
() eigenvector equation

6a+6b+0c=30a %b=%a=4a a=b/4

6a+16b+10c=30b

O0a+10b+22¢c=30c —>b=ic

10

1=[a*+b° +c2]l/2

a=42"
b=(8/21)""
c=(25/42)"
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5.73 Lecture #33 33-6
PH00)=42"y, +(8/21)7y, +(25/42)"y,,

Similarly,
| F 00> =3 (le TV, — Wsz)

9 -1/2 2 1/2
1 s (2] v s,
Note that each y,, basis state gets completely “used up” and all eigenvectors are

normalized and mutually orthogonal. You should verify both “used up” and
orthogonality.

Nonlecture: Singlets

Lz‘ll OO>:h242‘1I 00>

6 6 0 0 a a
6 16 10 0 b |_4o P
0 10 22 2402712 C C
0 0 24.27'7 24 d d
6a+6b=42a 6b=36a= a=b/6 5
6a+16b+10c=42b 6a+10c=26b 10c=25b CZEb
10
2427 ¢c+24d =42d 24-272c=18d d=1on
1 25 501" T
normalization: 1= b[_+1+ 4 _} b=(6/77)
36 4 9

1/2 1/2 1/2 1/2
\1100>=1(£) v +(£) v +§(£) v +2(1) v
6\ 77 s\ 77 = 2\77 3 03\77 4

A lot of algebra skipped here:

9 1/2 49 1/2 1 1/2 18 1/2
o3 2] v 3 2
‘ > 77 \llls 77 WZS 77 w.‘as 77 W4S
25 1/2 9 1/2 8 1/2
e (2] oo (3] w3
‘ > 42 wls W25 42 WSS 42 \V4s

2 1/2 2 172 2 1/2 1 1/2
‘ IS 00> = _[7) lljlx +(7) w2s _(7) w}v +(7) ll!4s

6
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Again note that each vy, is used up. You should verify orthogonality!

Two opposite strategies:

1. ladder down from extreme M;, Mg
2. L2+ S? matrices are large but easy to write out for M; = 0 and Mg =0
ONLY — could then ladder up from any L2, S? eigenfunction (no need
to use orthogonality because every L—S state is present in the M; =0,
Mg = 0 block).
Before going to Projection Operators, look briefly at the problems
associated with deriving 2 other kinds of basis states.
m; “‘coupled” orbitals — important for strong spin-orbit

’ limit with HEAVY ATOMS.
X (H is diagonal in [j) and in [JM,LS))
‘ ]0)€S>

Cn , > energy separations between L-S terms

(all C , are > 0)

| IM L S> coupled many-electron L-S-J states.
7 : ) : :

Again — useful in strong spin-orbit limit

|JMJ LS) ¢ 3-j or ladders N |LMLSMS>
J?2 ladders and
(ladders are L2 and S? and
1 t 3-j in
jszizzs) multiple
steps
H( ljl(DES) H < 3-j or ladders \Hnﬁm Sm )( )’

\

to get here, must go long way around or
use projection operators.
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NONLECTURE

BOX METHOD FOR [jw/s) orbital basis: (nf)’ example
No need to specify ¢ and s.

Standard Order: (7/2 7/2), (7/2 5/2), (7/2 3/2), (7/2 1/2), (7/2, -1/2), (7/2, -3/2),
(7/2 -5/2), (7/2 -7/2), (5/2 5/2), (5/2 3/2), (5/2 1/2), (5/2 -1/2),
(5/2 -3/2), (5/2 -5/2)

14 functions ‘jl(oljzoa2> List only Slater determinants with M;> 0.

Suppress the /2's

4 M,
o 7 el
@2 6 |77l lessl
3 5 |rrrsl l7ssl Iesssl
©® 4 lwrall lezsal les7sl Iesssl 7sssl [lssssl
@ 3 7=l k75—l lzs7ll - Izl l7sssl lsssill  ll71ssl
@) 2 l77-dl lrs-sl w771 lezs-1l szl lessil  l7assl 7 -1ssl
55 -1l ls351l
a1y 1 l77-sl lr75=5l lrs7=3l I7s5-3l l7a7-1 k35-1l Iris1l l7-154]
7 - 355l 5553l ls35-1l
a3y o lr77=7l lws7=5l lrs5-5l 7373l l35-3l l17-1l lr15-1 =zl
l7-151ll Hr=s7sk l7-3531 I7-555 5555l ls35-3l l515-1l
AWFUL! The number of Slater determinants increases in steps larger than 1
as you move down from M; = J. Ladders plus orthogonality cannot
work.
Work in the 13 member M, = 0 block Worst possjble one for ladders plus
orthogonality.
J=J—nd +J J [Hopeless to attempt to set up I’ and S* matrices!] Why?
diagonal
Dimension of Various J blocks: J =6 Dimension = 2
5 1
4 3
3 1
2 3
1 1
0 2

All blocks are manageable! Ladder up from M; = 0.
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coupled basis sets are convenient for L -S and ¢; s; (spin-orbit)

uncoupled basis sets are convenient for (L, + 2S)) (Zeeman)

Either of the two many-electron basis sets 1s OK for i—z
The big problem for e?/r.; is that it has /

many off-diagonal matrix elements|in the Slater

determinantal basis set. These are extremely tedious to
evaluate. The solution to this is the

“Slater Sum Rule” method.
It 1s based on the fact that the trace of a matrix is equal
to the sum of its eigenvalues. This is true regardless of
what representation is used to express the matrix.

SUM RULE METHOD: Diagonal matrix elements of

2
€ / 'ij in the Slater
determinantal basis set

NEXT TIME
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NONLECTURE: Projection Operators

This is an alternative method to set up |LM; SMy) or | JLSM,) basis sets in terms
of either n/m,sm, or njo/s spin-orbital Slater basis sets.

1. Work out L? and S? matrices for n/m sm, (or J2 for njo/s). These matrices are
block diagonal in M;,Mg (or My;).

2. Construct an operator which, when applied to an arbitrary function, annihilates
the undesired part of that function.

e.g. annihilate 1" by [L”-#"L"(L”+1)|¥

3. Modify the above operator so that it preserves the amplitude of the L’
component of y.

e.g. annihilate L” , and preserve amplitude of L’
I:2 _ th”(L”‘i' 1)
n L (L +1)-17(17 +1)]

:|‘PEP‘P

show how this works by applying it to ¥ =ay ,, +by,,

P( by, L'(L’+1)-L"(L"+1) N L”(L” +1)—-L”(L” +1)
a ’ S)=a B ’”
Vi oW, L'(L’+1)-L"(L" + 1)% L'(L’+1)-L"(L”+1) Vi
=ay, +0y,,

4. Now recognize that one can build a projection operator that annihilates all of
the undesired L.” components by taking a product of operators like that in #3,
one for each L.” .

b H ]:2 . hZL”(L” n 1)
Yooaitme B +1)-r2L7 (L7 +1)
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5. Recognize that Py = a; y;,, which is not normalized, because aj, is the
amplitude of y;, in y. Get a normalized vy, by recognizing that (y,.|¥)=a,

P Y
(v, |¥)

This method is useful for dealing with [JM;LS) in the [jo/s) orbital basis because
there is no simple way of block diagonalizing J2 in terms of L? and S2. It is only
possible to block diagonalize J? in terms of M;.

Wi

Modern calculations will simply set up the J2,J, matrix, diagonalize J2, and then
discover to which eigenvalues of L? and S? each J?, J, basis function belongs. In

many cases two or more L—S terms will contain L—S—J components which belong
to the same eigenvalue of J2.
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