
 

 

  

      

 

    

 

 

 

 
 

  

 

 

		

	 	 	 	 	 	 	
	 	 	 	 	 	 	 		 	

	 	 	 	 	 	 	 	 	

   
   

 

   
  

   

 
    

solutions to Schrödinger Equation outside sphere of radius r0

5.73 Lecture #30 30 - 1 

Matrix Elements of Many-Electron Wavefunctions 

Last time: 
1/2
⎤⎡ ℜ non-integer principal quantum number (E∞,ℓ = 0)−v = ⎢

⎣ 
⎥
⎦En,ℓ 

⎫⎪fℓ (v,r) two linearly independent solutions to Schrödinger Equation are⎬ gℓ (v,r valid outside sphere of radius r0⎪⎭

ν = n − µ (non-integer ν)ℓ 

πµ is phase shift of f (ν,r)ℓ ℓ 

Infinite set of integer-spaced ν-values that satisfy the r → ∞ boundary 
condition 

Wave emerges from the core with ν-independent phase. Core 
transforms wave with correct r → 0 limiting behavior into one that exits 
the sphere of radius r0, which contains the core region, with πµℓ phase 
shift. 

Core is sampled by a set of different ℓ values. 

Today: 

Wavefunctions and Energy States of many-electron atoms: a magic decoder 

1. (spin) orbitals → configurations → L-S states
2. electrons are Fermions → ψ must be “antisymmetrized”: KEY PROBLEM

−3. Slater determinants are antisymmetric with respect to all ei ,e
− 

j permutations 
A. Normalization

B. Matrix Elements of one-e−  Operators:  e.g. HSO = ∑ a ri( )ℓ i ⋅ si
i 

next few 

C. Matrix Elements of two-e−  Operators:  e.g. He

(a very strong “perturbation”) 
=∑ e2 

i> j
rij

lectures 4. Heff in terms of εnℓ,
orbital 
energy 

Fk ,Gk parameters"#$ ,ζ nℓ 
spin-

Slater-Condon orbit 

1/rij

Page 31-9 is an example of what we will be able to do. 
* Interpretable trends: Periodic Table
* Atomic energy levels: mysterious code — no atom-to-atom relationships
evident without magic decoder ring.
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Need both f and g to satisfy boundary condition for E → 0 as  r → ∞  
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5.73 Lecture #30 30 - 2 
Many-electron H 

2eH = ∑ h(i) + + ∑ a(ri )ℓ i ⋅si
i=1

N

i!"# i> j=1

N

∑ rij!## #"####$ 
H( 0 )

H(1)

sum of hydrogenic 
Z 2ℜ1− e− terms: − = −εn (unshielded hydrogenic orbital energies)
n2 

How do we set up a matrix representation of this H? 

H(0) defines the basis set (complete, orthonormal, …) 
spatial spin 

part part the φi(ri)’s could be 

H(0) hydrogenic or= ∑ h(i) ↔ ψ = φi (ri ) sm s (i) ⎤⎦∏ ⎡⎣ shielded-core
i=1

N

i=1

N

Rydberg-like orbitals.
For two e–: 

$# 

⎡⎣h(1) + h(2)⎤⎦φ(1)φ(2) = ⎡⎣h(1)φ(1)⎤⎦φ(2) + ⎡⎣h(2)φ(2)⎤⎦φ(1)
a constant with respect to h(1). 

H as sum, E as sum, but get ψ as product 

Electronic Configuration: list of orbital occupancies 

e.g. C 1s22s22p2  six e–

This is not sufficient to specify the state of a system 

!
L ≡ 

!
ℓ 

Several L,S terms arise from this configuration: e.g.p2 → 1D, 3P, 1S 
! ! ! ! !∑ i S ≡∑ si r12 

= r2 
− r1 

⎤
⎥
⎦

⎡
⎢
⎣

i i 2 1/22 2 
−2r1 

ir2 

e = +We know that L2, Lz, S2, Sz commute with h(i) + r1 
r2r12 "$$#So we can use thse to bock diagonalize H 

rij 

vector with respect to ℓ1 and ℓ2 
2 scalar with respect to LNote that although ℓ i  does not commute with e rij , this is not 

a problem for si 
2  and siz  because h(i) and rij do not involve spin.

 destroys ℓ i but does not destroy L!rij 
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possible out of 〈H(1)〉 
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5.73 Lecture #30 30 - 3 
How do we get eigenstates of L2, Lz, S2, Sz 

either: I. Method of ML, MS boxes 
Advanced Inorganic Chemistry Course 
Which L–S “terms” exist, but not the specific linear combinations 
of spin-orbital products that correspond to these terms. 

II. Angular momentum coupling techniques: 
3-j coefficients 
ladders plus orthogonality 
projection operators 

We will return to this problem and approach it in all 3 angular momentum coupling 
ways. 

One rigorous symmetry must be imposed: 
Pauli Exclusion Principle: electrons are Fermions and therefore any acceptable 
wavefunction must be antisymmetric with respect to permutation of ANY pair of e– 

electrons 

e.g. 1,2 = µ1(1) µ2(2) 
orbitals 

1,2 = µ1(2) µ2(1) ≡ 2,1 P12 

e– are indistinguishable, ∴[ H, Pij] = 0 

∴  all ψ' s must belong to +  or –  eigenvalue of Pij (note that Pij
2 = I) 

+ Boson (integer spin) 
– Fermion (1/2-integer spin) 

= 2−1/2 1,2 ± 2,1 ⎤⎦ ψ+  bosonsψ ± 
⎡⎣ top sign 

ψ = 2−1/2 2,1 ± 1,2 ⎤⎦ = ±ψ ±P12 
⎡⎣ 

ψ–  fermions 
bottom sign 

3
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5.73 Lecture #30 30 - 4 
generalize to 3 e–? 3! combinations needed! Horrible! 

* ψ’s have N! terms (each is a product of N spin-orbitals) 
* matrix elements have (N!)2 additive terms! Even more horrible! 

TRICK! Slater Determinants 

e– 

µ1(1) µ2(1) 
= µ1(1)µ2(2) − µ1(2)µ2(1) 

µ1(2) µ2(2) row is label for e– 

column is label for spin-orbitalorbital 

(1) ! u (1) u1 n 

! ! ! 
u1(n) 

You show that a 3 × 3 Slater determinant gives 6 additive product terms 

Determinants are of N × N dimension 

* N! additive terms in expansion of determinant 
* determinant changes sign upon permutation of ANY two 

rows [e–’s] or columns [spin-orbitals] 
* determinant is zero if any two rows or columns are 

identical. 
* determinant may be uniquely specified by its main diagonal 

MUST SPECIFY IN ADVANCE A STANDARD ORDER 
IN WHICH THE SPIN-ORBITALS ARE TO BE LISTED 

ALONG THE MAIN DIAGONAL 

e.g. sα,  sβ, p1α,  p1β,  p0α,  p0β,  p -1α,  p -1β, … 

[or for pN, suppress p in notation: 1α1β0α → ML = 2, MS = 1/2] 

Need a fancy notation to demonstrate how Slater determinants are to be 
manipulated in evaluating matrix elements. This notation is meant to be 
forgotten as soon as it has served its immediate purpose here. 
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5.73 Lecture #30 30 - 5 
# of binary permutations away 
from “standard order” 

= (N !)−1/2 ∑(−1) p℘⎡⎣ µ1(1) … µN (N ) ⎤⎦ψ N 
℘

 N! different ℘’s 

℘ is ONE prescription for rearranging the orbitals from the initially 
specified order 

℘ is product of several Pij ’s or, more useful for proving theorems, a product 
of N factors Pi which specify whether the ith electron is to be left in the ith 

spin-orbital or transferred to some unspecified spin-orbital 

℘⎡⎣ µ1(1) … µN (N ) Pi µi (i)⎤⎦∏ 
N 

i=1 
A. Normalization 

)−1/2 
Verify that (N ! is the correct normalization factor 

)−1 )p+ 
= ( N ! ∑ (−1 

p′ 
℘⎡⎣ u1(1) … uN (N ) u1(1) … uN (N ) ⎤⎦.⎤⎦℘′ ⎡⎣ψN ψ N 

℘,℘′ 

Now rearrange into products of one-e–  overlap integrals, 

( )−1 (−1)p+ p′ N 

= N ! ∑ ∏ Piui (i) Pi ′ui (i) .ψN ψ N 
℘,℘′ i=1 

The are orthonormal.ui 

u(i) u( j) has no meaning because the bra and ket must be associated with the 
same e – 

The only non-zero legal terms in ∑ are those where EACH Pi = Pi ′ 
℘℘′ 

otherwise there will be at least 2 mis-matched bra-kets 
ui (k) uj (k) … uj (ℓ) ui (ℓ) 

= 0 = 0 
(Here the electron names match in each bra-ket, but the spin-orbital 
quantum numbers do not match.) 
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5.73 Lecture #30 30 - 6 
Thus it is necessary that ℘=℘′, p = p′,(−1) p+ p′ = +1 and 

= (N !)−1∑℘⎡⎣ µ1(1) µ1(1) … µn (N ) µn (N ) ⎤⎦ψ N ψ N 
℘ =1 =1 

Each term in sum over � gives +1, but there are N 
possibilities for P1, N – 1 possibilities for P2. 

∴N! possibilities for sum over ℘ 
N 

= (N!)−1∑1 = 1ψ N ψ N 
℘ 

Thus the assumed (N!)–1/2 normalization factor is correct. 

B. Matrix elements of one-electron operators 

F = ∑
! 

f (ri ) e.g. L = ∑
!
ℓi 

i i 

)−1/ 2 ) pψ A ≡ ( N ! ∑ (−1 ℘ a1 (1) … aN (N ) 
℘ 

)−1/ 2 p′ 
ψ B ≡ ( N ! ∑ (−1) ℘′ b1 (1) … bN (N ) 

℘′ 

)−1 ) p+ 
Fψ B = (N ! ∑ (−1 

p′ 
℘[ a1(1) …]f ( )℘′ b1(1) …]ψ A ri [ 

)
i ,℘,℘′ 

−1 ) p+ 

( ) (i) ⎤ 

= (N ! ∑ (−1 
p′ [ P1a1(1) P1b1(1) ]

i ,℘,℘′ 

⎡ … Piai (i) f ri Pi ′bi ⎦⎥
…[ PNaN (N ) PN ′ bN (N ) ]

⎣⎢ 
special term because indices match for e – in both orbitals and the 
operator. 

There is a product of N orbital matrix element factors in each term of sum. Of 
these, N–1 are orbital overlap integrals and only one involves the one-e– operator. 

Consider the 3 possibilities for 1-e– operators: ∆so = 0, =1 or > 1. 
updated August 27, 2020 @ 1:42 PM 
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5.73 Lecture #30 30 - 7 
SELECTION RULE ΨA F ΨB = 0 if ψ A and ψB differ by more than one spin-orbital 

(because at least one of the orbital overlap integrals would be zero) 

two cases remain: 

1. differ by one spin-orbital

ψ A = u1(1)…ak (k)…uN (N ) the mismatched orbitals are in 
the same (kth) positionψ B = u1(1)…bk(k)…uN (N ) 

Use ui to denote common spin-orbitals 
Use ak, bk to denote unique spin-orbitals 

For this choice, all N Pi factors of each ℘ must be identical to all N factors of ℘′.)

⎫⎪
⎬ 
⎪⎭ 

There is an additional requirement: � must bring mismatched orbitals into 
i-th position so that they match up with the f(ri) operator to give

ak (i) f ri( ) bk (i) .

ANY OTHER ARRANGEMENT GIVES 

ak ( j) bk ( j) ui (i) f (ri ) ui (i) = 0
! #"##$ !##"##$

=0 ≠0

(N – 1)! ways of arranging the e– in the other N – 1 matched orbitals and 
there are N identical terms (in which the e– is in the privileged location) in 
the sum over i 

)−1
F = ( N ! ( N −1)!N fψ A ψ B ak bk

from the (N!)–1/2 normalization factor for each |ψ〉
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Lecture 30 - 85.73 #30 
� � If the order of spin-orbitals in must be arranged away from theorA B 

standard order in order to match the positions of  and b , then we get anak k 
additional factor of (–1)  where p is the required number of binary permutationsp 

⎤
⎦ 

for a difference)p 
of oneF = (−1 fψ A ψ B ak bk spin-orbital 

i.e. A= 12 5 7 

(one binary permutation 
is required) 

B = 12 35 = − 12 5 3 

F 3ψ − 7= B 

⎡
⎣

ψ A f 

∑ 
2. ψA = ψB Differ by zero spin-orbitals 

)−1
F = ( N ! Piai (i) f ( ) Piai (i)ψ A ψ A ri 

i,℘ 
all other factors are =1 

N! identical terms from sum over ℘ [again (N – 1)!N] 

F = ∑ f ri( ) aiψ A ψ A ai 
i 

⎫ 
⎪
⎬ 
⎪
⎭ 

* Normalization 
comes out almost the same as naive what is new? only the and Pexpectation WITHOUT need for factor of (–1) for re-

* 1- e−  Operator F antisymmetrization! ordering |ψB〉 to 
match order in |ψA〉

Examples of f3: ψ = 3α1α − 2α (λ = 3,λ = 1,λ = −2) 
L = !(3+1− 2) z 

3L S = !2 ( + 1 −1)2 2z z 

3α1α − 2α = L+ 
3α1α − 2α + S+ 

3α1α − 2αJ+ 

= ! 0 +101/2 +101/2 3α2α − 2α 3α1α −1α + 0 + 0 + 0⎤⎦⎡⎣ 
YOU VERIFY! 

next time G(i,j), a 2-electron operator. 
updated August 27, 2020 @ 1:42 PM 
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