
 

 
 

 
  

   
 
 
 
 

  
    

 
 

 
  

 
 

 

 

5.73 Lecture #28 28 - 1 

Hydrogen Radial Wavefunctions 
The Hydrogen atom is special because it has electronic states and properties that 
scale with the principal, n, and orbital angular momentum, !"quantum numbers, in 
a simple and global way. This is “structure” that is more than a collection of 
unrelated facts. The H atom serves as our model for “electronic structure” of many-
electron atoms, molecules, and possibly solids. 

By showing how E, ⟨"!⟩ (size and shapes), ⟨$%|"|'"ℓ"⟩ (general matrix elements) 
scale with the n and ℓ quantum numbers, it tells us the kind of behavior to look for 
and how to understand it in more complex systems. 

* as a perturbation on the Hydrogen atom (quantum defects) 
* as a hint of relationships that are useful for extrapolation, 

assignment, and for recognizing when something behaves 
differently from naive expectations. 

TODAY 

0. A warning. 
1. Simplified Radial Equation – a trick to make it look exactly like 

the 1D problems we have already solved. 
2. Boundary conditions as r → 0 and r → ∞# 
3. qualitative features of Rnℓ(r) 
4. n-scaling of 〈rσ〉 , where � is an integer 
5. mathematical form of Rnℓ(r) 
6. regular and irregular Coulomb functions 

Warning: This first lecture on the Hydrogen atom is not what you expect. Most 
textbooks treat the H atom as an exactly solved problem. The solution is based on 
standard techniques for solving differential equations and the solutions are 
expressed in terms of named and tabulated special function. The exact and analytic 
solution for the H atom is presented as a unique, beautiful gem to be admired and 
stored in a safe place, out of view and out of use. What I present here is based on 
techniques and approximations discussed in previous lectures. My goal is to arm you 
with methods to answer questions that apply to many-electron atoms, molecules, 
and to quantum number “scaling-rules” that provide a framework for describing 
intra-species and inter-quantum-state patterns of observable properties. These 
quantum number scaling ideas are mostly based on the stationary phase 
approximation (in what local region of space does an integral accumulate to its final 
value, what does the WKB approximation tell you about wavefunction amplitudes 
and node-spacing in this special region) and perturbation theory. These are 
techniques and ideas that you will use throughout your career to build insights that 
will amaze your colleagues. 
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So we can take Yℓ 
m (θ,φ) out of the Schrödinger Equation and we are left with

a 1-D radial equation where the only remaining hint of the angular part is 
the ℓ-dependence of Vℓ(r), the effective potential energy function. 

Since the differential equation depends on ℓ, R(r) must also depend on ℓ, thus 
Rnℓ(r) is the radial part of ψ, and it will generally be an explicit function of 
two (not 3) quantum numbers, n and ℓ. 

Usually n specifies the number of radial nodes and ℓ the number of angular 
nodes, but a special numbering convention for Hydrogen (and hydrogenic 
ions) causes a slight distortion of this rule. 
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28 - 2 5.73 Lecture #28 
For every  central force problem

Ĥ
p̂

r
2

2µ
+ ℓ̂2

2µr2

⎡

⎢⎣
= ⎢

⎤
⎥
⎦⎥
+V (r)

(θ,φ),*We know that Ĥ,ℓ̂2, and ℓ̂
z
 commute, so spherical harmonics, Y

ℓ
m

are eigenfunctions of Ĥ with eigenvalues "2ℓ(ℓ +1).

*ψ (r,θ,φ) = R(r)Y
ℓ
m (θ,φ)

*trial form for separation of variables in ψ
⎛ p2 2

Ĥψ = ⎜ r + ℓ
2
+V (r)

⎝

⎞
⎟
⎠
Y
ℓ
m (θ,φ)R(r) = Eψ

2µ 2µr

Operate on the Y
ℓ
m

Ĥψ =Y
ℓ
m (θ,φ) p

r
2

2µ
+
"2ℓ(ℓ +1)

2 2
+V (r)

#%µr%%$%%%&
Vℓ (r )

⎛
⎜
⎜
⎜
⎝⎜

(θ,φ)  angular wavefunction and move it through to left:

⎞
⎟
⎟
⎟
⎠⎟

R(r) = Eψ



 
 
 

   

  

  

   
    

 

    
   

     

         

     

   

5.73 Lecture #28 28 - 3 
The radial equation, when the explicit differential operator form of p2 

r 

is derived and inserted, has the form 
⎧ 
⎪
⎪
⎨ 

⎫!2ℓ(ℓ +1) 
2µr2 

⎡ ⎤⎡ 
⎢
⎣ 

⎤!2 1 d2 

− ⎪
⎪
⎬ 

⎢ 
⎢⎣ 

⎥ 
⎥⎦ 

+ V (r)+⎥
⎦ 

r 
dr2 R (r) = E R 

nℓ nℓ nℓ 
(r)2µ r 

⎪ 
⎪⎩ 

⎪ 
⎪⎭T V 

r ℓ 

(r) by 1 
r

It is customary and informative to simplify this equation by replacing Rnℓ unℓ (r) 

1Rnℓ (r) = unℓ (r)r 

* the resulting equation looks simpler 
* the resulting volume element looks simpler 
* the behavior as r → 0 seems more familiar 

1Insert u (r) in place of R (r) and then multiply through on left by r,  we get nℓ nℓr 

!2 d 2 !2ℓ(ℓ +1) + V (r) − Enℓdr2 + 
2 µr2 

⎡ 
⎢
⎣ 
−

⎤ 
⎥
⎦ 
unℓ (r) = 0

2 µ 

This looks like ordinary 1-D Schrödinger Equation. 
Boundary condition: 

u (r) → 0 as r → 0 WHY? Because for all ℓ > 0, Vℓ(0) → ∞. 
nℓ 

exactly as if V(r) = ∞ for r ≤ 0, but of course r < 0 is impossible, so we had better 
be careful about behavior of unℓ(r) and Rnℓ(r) as r → 0 
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5.73 Lecture #28 28 - 4 
Note also that the volume element is dV = r2sinθdrdθdφ 

* *and the r-dependence of the integrand is R R r2dr = u (r)u (r)dr n′ℓ′ nℓ n′ℓ′ nℓ 

the r2 factor is 
cancelled. So the 
volume element 
looks just as in 1-
D problems

Return to special situation as r → 0. 
Why do we care? It turns out that only s-orbitals have Rns(0) ≠ 0 and that in 

ESR one measures “Fermi-contact” hyperfine structure which is related to 
the spin-density at specific nuclei. It is a direct measure of the ns atomic 
orbital character in each molecular orbital! 

CTDL, p. 781: What is the worst possible divergence of Rnℓ(r) as r → 0?
For r → 0, Rnℓ(r) will be dominated by rs where the exponent |s| is 

as small as possible. This is the most strongly divergent part of 
Rnℓ(r), which is all we need to be concerned with as r → 0. 

Let Rnℓ ~ Crs, where this is a good approximation as r → 0. 
Plug this definition into the Schrödinger Equation 

d2 d2

rR (r) = Crs+1 = (s +1)( )s Crs−1

dr2 nℓ dr2

"2 d21T = − 
r 2µ r dr2

"2 "2ℓ(ℓ +1)
H#R (r) = − C (s +1)( )s rs−2 + Crs−2 + V (r)Crs − E Crs = 0 

nℓ nℓ2µ 2µ *As r → 0 V(r) rarely diverges 
idly than 1/r , thus 

⎡ ⎤
1 ⎢ 

⎢ 
⎢⎣

⎥
⎥
⎥⎦

if V (r) ∝ more rap
V(r)C	 r s g s-1 ives r .r 

Then, in the limit r → 0, the coefficients of the rs–2 term (i.e. the most 
rapidly divergent term) must be = 0 

–(s + 1)s + ℓ(ℓ + 1) = 0 

*This excludes the stronger divergence of the centrifugal barrier term in Vℓ(r),
which is included separately. 
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5.73 Lecture #28 28 - 5 

Satisfied if s = ℓ or s = –(ℓ + 1) 
explore the second possibility: 

s(s + 1) = (–ℓ – 1)(–ℓ – 1 + 1) = –(ℓ + 1)(–ℓ) = ℓ (ℓ + 1) 
If ! = ℓ, the $ → 0 form of '!ℓ($) = *$ℓ which is OK for all ℓ. 
If ! = −(ℓ + 1), the $ → 0 form of '!ℓ($) = *$#(ℓ%&) diverges for all r. 

ℓ 1In other words Rnℓ (r) → r OR (if s= − (ℓ + 1)) ℓ+1 as r → 0 
rwell behaved 

disaster even if 
ℓ = 0 

at r → 0 

Actually, both of these possibilities satisfy the differential equation in 
the limit ! → 0 for $(!) = 

!
" 

(known as the Coulomb — or H atom 
Hamiltonian), but the one that diverges as ! → 0 cannot satisfy the 
! → 0 boundary condition for the H atom, but it turns out we will need 
both types of solution. 

** “Regular” and “Irregular Coulomb” wavefunctions – we will 
return to these later in the context of Quantum Defect Theory. 

So, for now, we insist that 

Rnℓ (r) → r ℓ as r → 0 

Rns (0) ≠ 0 special situation for Rns(r) 

Rnℓ>0(0) = 0 

unℓ (0) = 0 for all ℓ" 
(no special case for uns(r)!) 
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5.73 Lecture #28 28 - 6 

For Hydrogen 

"2ℓ(ℓ +1) e2 

V
ℓ
(r) = + 2 

− 22µr r qe2 ≡ 4πε0 

V0 (r) 

What do we know from our study 
of 1-D problems? 

WKB λ h 

0 

0 r 

µ = 
m e m p 

m e + m p 

≈ m e 

Vℓ(r) 
for ℓ > 0 

Vℓ(r) 

p−1/ 2 2 
= 2p(r)ψ envelope ∝~ ASK QUESTIONS: 

What are the qualitative # of nodes, placement of nodes, 
shapes of unℓ(r) in inner- degeneracy, behavior at inner 
most and outermost lobes? and outer turning points, 

location of inner and outer 
turning points 

h ⎛ ⎛ 1⎞ ⎞inner vs. outer part of unℓ (r) — where is the extra of action 
⎝⎜ 

J = "∫ p(r)dr = h
⎝⎜ 

n + 
⎠⎟ ⎠⎟

 acquired 
2 2 

(associated with tunneling into nonclassical region)? 
r> ( E )⎡ ∫ 2 

⎤recall p(r)dr = h (n +1/ 2) 
⎣⎢ r< ( E ) ⎦⎥ 
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5.73 Lecture #28 28 - 7 
ℜ e4 µHFind that E = − = nℓ 2 ℜH 2"2n (m )(m )− + 

µH 
= 

e p ! m 
m − + m + 

eAt turning point V (r± 
) = Eℓ nℓ e p 

ℜ !2ℓ(ℓ +1) − r±e
2 2µ

2 − = 

− 
e n2 2 

− ℜ = 
"2ℓ(ℓ +1) 2µr± 

2µℜr± 
2

2 2 − = !2ℓ(ℓ +1) − r±e
2 2µn 2µr± 

r± n2 

Use Quadratic
Solve for r±  as function of n and ℓ formula to find r±(n) 

1/2 
r± = a0 ⎣⎢

⎡n2 ± n(n2 − ℓ(ℓ +1)) ⎦⎥
⎤ 

a0 
= 2 

!2 

Bohr radius 
e m 

when ℓ≪ 
e

n, where are r+2 1± 1− 
⎛ 
⎜
⎝ 

⎡ 1/2 ⎤ and r– ?ℓ(ℓ +1)⎞ ⎥ 
⎥ 
⎥⎦ 

(see table on page 28-12)⎟
⎠ 

r± = a0n 2n 
⎢ 
⎢ 
⎢⎣ 

Use this equation for the turning points to construct qualitatively correct 
cartoons of Rnℓ(r) in crucial regions. 

surprising systematic degeneracy 
etc. 

3s ———— 3p ———— 3d ———— 

2s ———— 2p ———— 

Enℓ 

1s ———— 

Because of the pattern of degeneracies, we use n to label degenerate groups rather than 
number of radial nodes 

ℜEnℓ = − 2n 
hence n is not # of radial nodes. 
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(because it is lowest energy solution to the ℓ = 1 equation)

5.73 Lecture #28 28 - 8 
orbital # of radial nodes 

1s 0 
2s 1 
2p 0 (because it is the lowest energy solution to the ℓ = 1 equation) 

3s 2 
3p 1 
3d 0 

# radial nodes = (n − ℓ) − l 

# angular nodal surfaces = ℓ 
total # nodes is n −1. What is the degeneracy? 

n degeneracy 

1 1 

2 1 + (2ℓ + 1) = 4 = 22 

3 1 + 3 + 5 = 9=32 

! 

n n2 

σn-scaling of r 
two limits vs.σ < –1 σ > 0 

determined near: inner turning point outer turning point 

~ n–3 2scaling: Bohr model rnℓ = a0n 

(see argument for inner lobe σn2σrσ ∝ a0on next page) see table on page 11 

Expectation values of r� vs. transition moments and off-diagonal matrix 
elements of r�. Stationary phase gives the essential insight! 

usually occurs in first (inner-most) lobe 

8
updated August 17, 2020 9:08 AM 



   

 

 

 

 

 

 
 

 

 

   
   

 

  

 

    

     
   

 

5.73 Lecture #28 28 - 9 

inner region 

IP 

3% of IP 

ℜ 109737cm−1 

n = 6 En = − ≈ 3000cm−1

36 
= 

36 

n = 1 

p2

Kinetic Energy = T = ≫ IP in the “inner region.” 
2µ 

variation of T from n = 6 to n = ∞ < 3% 
variation of p  < 1.5% 

hdeBroglie λ ~ 
p 

⎫
⎪⎪
⎬

independent of n. Because p is large and 
λr = 
2 

is the location of innermost node 
fractional change of p vs. n is negligible. ⎪

⎪⎭
e– comes into core region fast and leaves fast — ∆t same for all n 

)−1
time inside 2(v λ 

= v is velocityfraction of time inside core? one period ⎛ h ⎞
Same as probability inside core. 

⎝⎜ E − E ⎠⎟ 2n n+1 En = –ℜ n 
⎡ h ⎤

λ⎢ ⎥ E = p n+δ 2 − En−δ 2
2δℜ 

3⎥2 ⎢ 
⎢ v = p m ⎥⎦ 4mℜ 

n
⎣probability in inner lobe = ≈ 2 3h p n 

2ℜ n3 

n-independent (approximately for
n = 6 to n = ∞)

updated August 17, 2020 9:08 AM 
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5.73 Lecture #28 28 - 10 
fraction of time inside core region ∝ n−3 

~ 

amplitude of �nℓ ∝ n–3/2 inside core region

This is the basis of all Rydberg scaling 

⎧ 
inner lobe ⎨ ⎬Astonishingly important!

⎪amplitude in first lobe scales as n−3/2 
⎭

⎪1st node does not shift with n ⎫ 

⎩ 

)−3/2 σAll n,n′ matrix elements of r , where σ < −1 scale as (nn′ ! what happens at σ = −1?

Some matrix elements scale this way even when σ>0. 

McQuarrie,  page 223 
ℓ+3/2 ⎡ (n − ℓ −1)! ⎤

1/2 

⎛ 2 ⎞ na0 L2 
n 
ℓ 
+
+ 
1
1 ⎛ 2 ⎞Rnℓ (r) = − ⎢ 3 ⎥ rℓe− r

⎢2n ⎡⎣(n + ℓ)!⎤⎦ ⎥ ⎝⎜ na0 ⎠⎟ ⎝⎜ na0 ⎠⎟⎣ ⎦ 
normalization 

exponential associated Laguerre 
→ 0 as r → ∞ functions

(polynominals) 

Regular and Irregular Coulomb functions (E ≤ 0) 

increasing 
decreasing

regular f(E,ℓ,r) ∝ rℓ+1 u(ν,ℓ,r)sin πν – v(ν,ℓ,r)eiπν, which is an

* v(ν,ℓ,r) is a decreasing exponential as r →∞
(see Gallagher, page 16)

u (r) ≡ rR(r) r → 0 exponentially 

 
    

 

 

         
    

           
  

   
 

    
          

 
  

 
       

    
 

 

       

 
      

      
 

             

        

    

 

 
  

 

 
 

 

  

 
 

  
    

   

  

 

unℓ (r) ≡ rR(r)

eiπ(ν+1/2), which

r →∞ exponentiallynℓ 

increasing exponential except when ν is a
proper behavior positive integer. Need some other way to 

as r → 0 satisfy r →∞ boundary condition when ν is not
an integer 

irregular g(E,ℓ,r) ∝ r–(ℓ) –u(ν,ℓ,r)cos πν + v(ν,ℓ,r) eiπ( ν+1/2) ,  which
blows up.
* u(ν,ℓ,r) is an increasing exponential as r →∞

bad news! 

(see Gallagher, Rydberg Atoms, page 16)
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 to behave pr operly as r → ∞ we need to take 
 linear combination of the f and g functions.  
 Possible only at certain values of ν (we 
sometimes call this n*) 



5.73 Lecture #28 28 - 11 
T.F. Gallagher, Rydberg Atoms, page 25 

1 r ⎡⎣3n
2 − ℓ(ℓ +1)⎤⎦2 

n2 

r2 ⎡⎣5n
2 +1− 3ℓ(ℓ +1)⎤⎦2 

1 r 1 n2 

1 r 

1 r 

1 r3 

1 r2 1 

n3 (ℓ +1/ 2) 

1 

n3 (ℓ +1)(ℓ +1/ 2) l 

4 3n2 − ℓ(ℓ +1) 
2n5 (ℓ + 3 / 2)(ℓ +1)(ℓ +1/ 2)ℓ(ℓ −1/ 2) 

6 35n4 − 5n2 ⎡⎣6ℓ(ℓ +1) − 5⎤⎦ + 3(ℓ + 2)(ℓ +1)ℓ(ℓ −1) 
8n7 (ℓ + 5 / 2)(ℓ + 2)(ℓ + 3 / 2)(ℓ +1)(ℓ +1/ 2)ℓ(ℓ −1/ 2)(ℓ −1)(ℓ − 3 / 2) 

Note! all rσ σ < −1 scale as n−3! 

2σ !σ > 0 scale as n 
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5.73 Lecture #28 28 - 12 

Outer and Inner Turning Points 

Orbital r+(n,ℓ)/Å r–(n,ℓ)/Å 
1s 1.058 0.00 
2p 3.612 0.624 
3d 7.508 2.012 
4f 12.696 4.232 
5g 19.137 7.313 

10s 105.8 0.00 
10p 105.3 0.529 
10d 104.2 1.587 
10f 102.5 3.280 

2 "2ℓ(ℓ +1) ℜV r± + = E = −( ) = − 
e 

ℓ 2 nℓ 2r± 2µr± n 

in atomic units: 
1 1 ℓ(ℓ +1) − = − + 

2n2 r± 2r± 
2 

12
updated August 17, 2020 9:08 AM 



 
 

  
 

 

  

MIT OpenCourseWare 
https://ocw.mit.edu/ 

5.73 Quantum Mechanics I 
Fall 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

13

https://ocw.mit.edu/
https://ocw.mit.edu/terms



