5.73 Lecture #27 27 - 1

Wigner-Eckart Theorem
CTDL, pages 999 - 1085, esp. 1048-1053

Final lecture on 1e- Angular Part
Next: 2 lectures are on le~ radial part
Many-e~ problems — 8 lectures!

Previous Lecture: [JLSM;) VS. |LM; SMg)
coupled uncoupled

Transformation between these basis sets is general and tabulated
Vector Coupling Coefficients
Clebsch-Gordan Coefficients
3-j Coefficients

Same information, increasingly convenient formats.

Correlation Diagrams between limiting cases

* non-crossing rule for states with the same value of rigorously good
quantum numbers (zero calculation approach)

* non-degenerate perturbation theory
sequence of steps for inclusion of information about the opposite
limit: EO, EO + FO EO + FO 4+ E®

* exact diagonalization

How does the pattern of energy levels for one limiting case morph into that for the other limiting case?

Note that J;, L;, S; operators cannot cause off-diagonal matrix elements in [JM;), [LM; ) or |[SMg) basis
sets, respectively.

However L, and S, can cause AJ =+ 1 matrix elements in the |[JMj) basis set.

Why? Because L and S are vectors with respect to J.
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Triangle Rule: [L—-S|<J<L+S

Maybe it is better to think about classification of operators as “like”” an angular
momentum — 7’ ! Spherical tensor operators behave like angular momenta.

7(0)

4 T((O)‘J.M.> gives J+o,J +o—1,. | -l
£ “ 1 1
J.

1

This works! We construct operators classified by what they do to members of the [JM;)
basis set.

How? Commutation Rule definitions of the Téw) operators:

(3,79 ]= 0@+ - puzn] T
(3.7 | = nuT®
277y #

All matrix elements Téw) in the | JMJ) basis set are derivable (and inter-related)
from these commutation rules.

Do the above commutation rules look familiar? We see the same thing from J_.|JM) and
J, | JNMD).

This is a mixture of intuition plus rigor based on tabulated coupling constants.

The Wigner-Eckart Theorem gives us everything we need. The derivation of the W-E
theorem from commutation rules is extremely tedious. The Herschbach handout illustrates
some of the derivation. [Supplement #1]
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Scalar, Vector, and Tensor Operators

Selection Rules

Scalar S TO(O) matrix elements are AJ =0, AM =0 M-independent
Vector \Y TV matrix elements are Ad = 0,+1, AM=0, +1 explicitly M-
g dependent
Tensor Tﬂ(m) o = rank, u = component
We seldom see Tensors with w > 2.
Construct and classify operators via Commutation Rules
Rank: w “Like” components: p
Scalar 1 component 0 J=0 u=20
Vector 3 components 1 J=1 pn=0ez
+1 = —(2)1(x + iy)
—1 = +@2)"(x - iy)
(not quite like )
Tensor 2w+ 1 W J=w +2, +1, 0, -1, -2,
components (for w = 2)

Example: J-L+ S

1.

[f.,g] = 0. L and S act as scalar operators with respect to each other
(because they operate on different coordinates)

L and S act as vector operators with respect toi
L-S acts like a scalar operator with respect toj

LxS gives 3 components of a vector operator with respect toj
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We can use commutation rules to project out of any operator the part that acts like a
TLE‘") or we can construct such T, é“’) operators explicitly!

Wigner-Eckart Theorem

T(w)

NJ)

T(w)
M

(N w T N, ) = At (N0

N’ and N are radial quantum numbers (i.e. everything that is not a specified
angular momentum)

A;‘]X]{l 1s a tabulated vector coupling coefficient (or Clebsch-Gordan or 3-j)

(N[

NJ > 1s a “reduced matrix element”

It is reduced in the sense that M’, u, and M are removed.

Often the reduced matrix elements of TPE(‘)) can be evaluated by looking at matrix
elements of “stretched staes”: J=J+J,, ] =J1 +J> and u = w.

Recall that extreme members of coupled and uncoupled basis sets are equal.
J=L+S,LS,M,=L+S)=|LM, =L,SM =S)

Major simplifications result for stretched states.

How to build specified Tu(w) operators out of components of specific angular momenta
[denoted in square brackets].

TW[L]=52"*[L, +iL,]
TOIL)=L,

What about T3[L]? - (L+)?, but what about T{¥ and T.}?
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Suppose we want tensor operators constructed from two vector operators.

1O 4,B]= Y (<) T LA B)

k=—w

2| 4, 8] =T[4 [B]— 4,8,
T2 4,B]=TO[AIT "B+ T"[AIT"[B]— A,B,+ 4B,

Display this scheme more clearly and compactly:

2 1 0
W 7| 4,B] 7] 4,B] 7| 4,B]
2 (++)
1 (+0)+(0+) (+0)-(0+)
0 (+)+(CH (+-)—-(7) 00)
-1 0-)+(=0) 0-)-(=0)
-2 )

Nudtice how we get 7%, 79, and 7' as orthogonal combinations of A; + B;

Vector Coupling Coefficient

vector coupling coefficient

J2
J I M= Y \’JI,MI,Jz,M2>/<Jl,M1,J2,M2IJ,JI,J2,M>’

M,=M-M,
coupled M,=-J, completeness
J J J g _
. =) M) (MM LT - M)
! 2 Clebsch-Gordan
3-J

constraint M+M,-M=0

Vector Coupling: no symmetry, no explicit constraints
Clebsch-Gordan some symmetry, explicit constraint M, + M, —M =0
3-7: maximum symmetry, maximum constraints

(rules for permutation of columns)
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Examples of Use of Commutation Rules to Reveal the Properties of Scalar Operators
Scalar Operator: [J;, S]=0 alli

1. AJ=0 selection rule from [Jz, S]1=0

0=[3%8] o={(rmlas—sylum)=nls (7 +1)= s+ D0 pmlslum)

either J=1J or <J'M' SJM>=0
AJ = 0 selection rule

2. AM =0 selection rule from [J,, S] =0
0=(JM|J S-SJ |IM)=n(M ~ M){JM'|S|IM)
either M’ =M or <JM' S JM>=0

AM = 0 selection rule

M independence of (JMIS|JM)from [J., S]=0

0=(JM'|J S-S, I,

IM)=S,, (M’

IM)=S,,.(IM’

Ji

M )
— (S

J.

=8, ) (M]3, In )

JM>¢0whenM’:Mi1

<JM’

Ji

Thus S, =S which means that S, = is independent of M.

JM+1’

What is so great about Wigner-Eckart Theorem?
Massive reduction in number of independent matrix elements.
For example, J =10, w =1

<J’M’ 7O
u

M)

J’ limited to J +1 by triangle rule
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Y # of matrix elements # of reduced matrix elements
9 29+D)2-10+1) | 399 |1 c (10)=<9‘T(1) 10>
- M
10 | 210+ 1)2-10+1) | 441 |1 c0(10)=<10 ‘Tﬂ“’ ‘10>
11 | 2 11+1)2-10+1) | 483 |1 c (10)=<11‘T(” ‘10>
+ u
total 132313 only 3

(one might argue that 1323 is a factor of 7 too large)

1323 : .
—— > 3 is a huge reduction of what we need to know!

Special case for A] = 0 Matrix Elements of V!! Memorable!

(1-v)
B2 (J +1)

(Im (I |3[IM ) = e, (D) (TM’

J JM>

v JM> -

We can replace a A] = 0 matrix element of v by the corresponding matrix element of

]

An extremely convenient (practical) operator replacement. Derive effective H by
replacing V by J.

co(J) can also be evaluated by reference to the easily derived matrix elements of
stretched states.
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Also can derive similar relationships via Commutation Rules

J+1, M|V|JM> e D+ M+D-m+1)]"

J

)=, DU M+2) 2 m+1)]"
M V\JM)—C(J)M

M 1| am) = ey (DI +1) - m(mr£1)]”

1/2

J=1,My|IM)=c (DI - M)+ M)]

<
<
<
<
<
v/

—L M| =xe (N(TT MM D]

27 - 8

This has been just a taste of the power of spherical tensor algebra for problems with exact or

approximate spherical symmetry.

3-], 6-], 9-] algebra too burdensome to learn and remember unless you are going to use it

immediately.
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