
 
 

    
      

 
 

    
 

 
    

 
    

 
 
 
 

 
 

 

 

27 - 15.73 Lecture #27 

Wigner-Eckart Theorem 
CTDL, pages 999 - 1085, esp. 1048-1053 

Final lecture on 1e– Angular Part 
Next: 2 lectures are on 1e– radial part 
Many-e– problems – 8 lectures! 

Previous Lecture: |JLSMJ〉 vs. |LMLSMS〉 
coupled uncoupled 

Transformation between these basis sets is general and tabulated 

Vector Coupling Coefficients 
Clebsch-Gordan Coefficients 
3-j Coefficients 

Same information, increasingly convenient formats. 

Correlation Diagrams between limiting cases 

* non-crossing rule for states with the same value of rigorously good 
quantum numbers (zero calculation approach) 

* non-degenerate perturbation theory 
sequence of steps for inclusion of information about the opposite 

, E(0) + E(1), E(0) + E(1) + E(2)limit: E(0) 

* exact diagonalization 

How does the pattern of energy levels for one limiting case morph into that for the other limiting case? 

Note that Ji, Li, Si operators cannot cause off-diagonal matrix elements in |JMJ〉, |LML〉 or |SMS〉 basis 
sets, respectively. 

However Lz and Sz can cause ∆J = ± 1 matrix elements in the |JMJ〉 basis set. 

Why?  Because L and S are vectors with respect to J. 
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27 - 25.73 Lecture #27 

Triangle Rule: |L – S| ≤ J ≤ L + S 

Maybe it is better to think about classification of operators as “like” an angular 
momentum → T ! Spherical tensor operators behave like angular momenta.µ

(ω )

T (ω) 

(ω)T  gives J +ω,J +ω−1,… J −ω µ 
JiMiJf 

Ji 

This works! We construct operators classified by what they do to members of the |JMJ〉 
basis set. 

How? Commutation Rule definitions of the !!(#) operators: 

(ω ) (ω )⎡J ,T ⎦
⎤ = ! ⎡⎣ω(ω +1) − µ(µ ±1)⎤⎦ 

1/2 
T⎣ ± µ µ±1 

(ω ) (ω )⎡J ,T ⎦
⎤ = !µT⎣ z µ µ 

All matrix elements !!(#) in the |JMJ⟩ basis set are derivable (and inter-related) 
from these commutation rules. 

Do the above commutation rules look familiar? We see the same thing from J±|JM⟩ and 
Jz|JM⟩. 

This is a mixture of intuition plus rigor based on tabulated coupling constants. 

The Wigner-Eckart Theorem gives us everything we need. The derivation of the W-E 
theorem from commutation rules is extremely tedious. The Herschbach handout illustrates 
some of the derivation. [Supplement #1] 
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27 - 35.73 Lecture #27 
Scalar, Vector, and Tensor Operators 

Selection Rules 

(0) Scalar S T  matrix elements are ∆J = 0, ∆M = 0 M-independent
0 

Vector V T (1)  matrix elements are ∆J = 0, ±1, ∆M = 0, ±1 explicitly M-
µ 

dependent 

Tensor T (ω ) � = rank, µ = component
µ 

We seldom see Tensors with � > 2. 

Construct and classify operators via Commutation Rules 

Rank: � “Like” components: µ 

Scalar 1 component 0 J = 0 µ = 0 

Vector 3 components 1 J = 1 µ = 0 ⟷ z 
+1 ⟶ –(2)1/2(x + iy) 
–1 ⟶ +(2)1/2(x – iy) 
(not quite like J±) 

Tensor 2� + 1 � J = � +2, +1, 0, –1, –2, 
components (for � = 2) 

Example: J – L + S 

1. !#L⃗, #S⃗' = 0. L and S act as scalar operators with respect to each other 
(because they operate on different coordinates) 

2. #L⃗ and #S⃗ act as vector operators with respect to ,⃗ 

3. #L⃗ ⋅ #S⃗ acts like a scalar operator with respect to ,⃗ 

4. #L⃗ × #S⃗ gives 3 components of a vector operator with respect to ,⃗ 
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27 - 45.73 Lecture #27 
We can use commutation rules to project out of any operator the part that acts like any
!!(#) or we can construct such !!(#) operators explicitly! 

Wigner-Eckart Theorem 

(ω ) JωJ ′ T (ω )N ′J ′M ′ 
J 

T NJM
J 

= A δ N ′J ′ NJ 
µ MµM ′ M ′ M +µ 

N’ and N are radial quantum numbers (i.e. everything that is not a specified 
angular momentum) 

JωJ ′ A            is a tabulated vector coupling coefficient (or Clebsch-Gordan or 3-j) 
MµM ′ 

T (ω )N ′J ′ NJ  is a “reduced matrix element” 

It is reduced in the sense that M’, µ, and M are removed. 

Often the reduced matrix elements of !!(#) can be evaluated by looking at matrix 
elements of “stretched staes”: "⃗ = "⃗ + "⃗%, & = && + &% and ' = (. 

Recall that extreme members of coupled and uncoupled basis sets are equal. 

J = L + S,L,S,M = L + S = LM = L,SM = S
J L S 

Major simplifications result for stretched states. 

How to build specified !!(#) operators out of components of specific angular momenta 
[denoted in square brackets]. 

(ω )[L] = ∓2−1.2[LT ± iL ]
±1 x y 

(1)[L]T
0 

= L
z 

(%)?What about !±"(")[#]? → (#±)" , but what about !±%(") and !±% 
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27 - 55.73 Lecture #27 
Suppose we want tensor operators constructed from two vector operators. 

ω 
(0) (ω )[B]T0 [ A, B] = ∑ (−1)kTk 

(ω )[ A]T− k 
k=−ω 

(2) (1)[ A]T1
(1)[B] → AT2 [ A, B] = T1 + B+ 

(2) (1)[ A]T0
(1)[B] + T0

(1)[ A]T1
(1)[B] → AT1 [ A, B] = T1 B0 + A0 B+ + 

Display this scheme more clearly and compactly: 

µ (2) (1) (0) T µ [ A, B] T µ [ A, B] T0 ⎡⎣A, B⎤⎦ 
2 (+ +) 
1 (+ 0) + (0 +) (+ 0) – (0 +) 
0 (+ –) + (– +) (+ –) – (– +) (0 0) 
–1 (0 –) + (– 0) (0 –) – (– 0) 
–2 (– –) 

Noticenotice how we get T(2), T(1), and T(0) as orthogonal combinations of Ai + Bi. 

Vector Coupling Coefficient 

vector coupling coefficientJ2 

= ∑J , J1, J2 , M J , J1, J2 , MJ1, M1, J2 , M2 J1, M1, J2 , M2 
M2 = M − M1coupled M2 =– J2 completeness 

⎛ 
⎜
⎜⎝ 

J1 J2 J 
M1 M2 − M 

⎞ 
⎟
⎟⎠ 

)J1−J2 − M )−1/2 J1, J2 , J − MJ1, M1, J2 , M2 = (−1 (2J +1 
Clebsch-Gordan 

3 – j 

constraint M1 + M2 − M = 0 

Vector Coupling: no symmetry, no explicit constraints 
Clebsch-Gordan some symmetry, explicit constraint M1 + M2 – M = 0 
3 – j: maximum symmetry, maximum constraints 

(rules for permutation of columns) 
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0 = JM ′ J zS−SJ z JM = h M ′ −M( ) JM ′ S JM

Thus SJM = SJM±1 so SJM is independent of M.

27 - 65.73 Lecture #27 
Examples of Use of Commutation Rules to Reveal the Properties of Scalar Operators 

Scalar Operator: [Ji, S] = 0 all i 

selection rule for [J2, S] = 01. ∆J = 0  selection rule from

0 = [J2, S] 0 = J ′ M ′ J2S − SJ2 JM = ![ J ′( J ′ + 1) − J ( J +1)] J ′ M ′ S JM 
either J = J′ or J ′M ′ S JM = 0 
∆J = 0 selection rule 

2. ∆M = 0 selection rule from [Jz, S] = 0 

0 = JM ′ J S − SJ JM = !( M ′ − M ) JM ′ S JM 
z z 

either M′ = M or JM ′ S JM = 0 
∆M = 0 selection rule 

3. M independence of JM S JM from [J±, S] = 0 

0 = JM ′ J±S − SJ± 
JM JM ′ JM JM ′ JM J± 

J± 
= SJM 

− SJM ′ 

= (SJM 
− SJM ′ ) JM ′ JM J± 

JM ′ JM ≠ 0 when M ′ = M ±1J± 

Thus S = S , which means that S is independent of M. 
JM JM ±1 JM 

What is so great about Wigner-Eckart Theorem? 

Massive reduction in number of independent matrix elements. 

For example, J = 10, � = 1 

(1) T JM J ′M ′ µ 

J′ limited to J ±1 by triangle rule 

updated August 28, 2020 1:52 PM 
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(we could argue that 1323 is a factor of 7 too large)

&

&

&

27 - 75.73 Lecture #27 
J′ # of matrix elements # of reduced matrix elements 
9 (2·9 + 1)(2·10 + 1) 399 1 (1)(10) = 9 T 10c− µ 

10 (2·10 + 1)(2·10 + 1) 441 1 (1)) =c0 
(10 10 T 10 µ 

11 (2·11 + 1)(2·10 + 1) 483 1 (1)c (10) = 11 T 10+ µ 

total 1323 3 only 3 

(one might argue that 1323 is a factor of 7 too large) 

1323 ↔ 3 is a huge reduction of what we need to know!
7 

Special case for Δ" = 0 Matrix Elements of V&⃗  !! Memorable! 

J J ⋅ V J! ! 
JMJ = c

0
(J ) JM ′ 

! 
J JMJM ′ V JM = JM ′ 

"2J(J +1) 

We can replace a Δ" = 0 matrix element of V&⃗  by the corresponding matrix element of
(⃗. 

An extremely convenient (practical) operator replacement. Derive effective H by 
replacing V&⃗  by (⃗. 

)!(") can also be evaluated by reference to the easily derived matrix elements of 
stretched states. 
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27 - 85.73 Lecture #27 

Also can derive similar relationships via Commutation Rules 

]1/2 
J + 1, M V z JM 

]
= c+ (J )[( J + M +1)( J − M +1) 

1/2 
J + 1, M ± 1V± JM = c+ (J )[( J ± M + 2)( J ± M + 1) 

JM V JM = c0(J ) M z 

]1/2 
JM ±1V JM = c0(J )[ J ( J +1) − M ( M ± 1)z 

]1/2 
J − 1, M V z JM = c− (J )[( J − M )( J + M ) 

J − 1, M ± 1Vz JM = ±c− (J ) ⎡⎣( J ∓ M )( J ± M +1)⎤⎦ 
1/2 

This has been just a taste of the power of spherical tensor algebra for problems with exact or 
approximate spherical symmetry. 

3-j, 6-j, 9-j algebra too burdensome to learn and remember unless you are going to use it 
immediately. 
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