5.73 Lecture #25 25 -1

HSO + HZeeman
Coupled vs. Uncoupled Basis Sets
Last time:
matrices for Jy, J,, J , J,, J,, J, in |jm) basis for J =0, %, 1

Pauli spin %2 matrices
arbitrary 2 X 2 matrix M =a,I+4,-6 decomposed as scalar plus vector.

When M is p — visualization via fictitious vector in fictitious B-field.

When M is a term in H — 1dea that arbitrary operator can be
decomposed as a sum of the terms that behave like components of J =0,
J=1,J=2... This leads to spherical tensor algebra.

types of operators

al | e.g. magnetic moment (4 is a known constant or a function of r)
g | how to evaluate matrix elements (e.g. Stark Effect)

J,-J, | e.g.Spin-Orbit

Special simplification of Trace (AH)

For example

01 0 H11 H12 H13
A= 0 0 0 |, H=| H, H, H,
000 H, H, H,

AH = simpler

Trace(AH) = H, extreme simplification!

A, picks out only H,;, A,; picks out only Hi,.

Extreme labor saving trick!

revised 17 August 2020 10:19 AM



5.73 Lecture #25 25 -2

TODAY:

1. HSO + HZ%eman gg jllustrative

2. Dimension of two basis sets, | JLSM;) and | LM; SMy), is the same

3. matrix elements of HSC in both basis sets

4. matrix elements of H%eman jn both basis sets

5. ladder operators and orthogonality for transformation between basis
sets. Necessary to be able to evaluate matrix elements of H%eeman jp

“coupled basis”. Why? Because coupled basis set does not explicitly

reveal the effects of L, or S,.
Nos. 3, 4 and 5 will be repeated in Lecture #26.

Suppose we have 2 kinds of angular momenta, which can be coupled to each other to
form a total angular momentum.

L orbital _ . o

. _ operate on different coordinates or in different vector spaces
S spin

J=L+S total

The components of L,S, and J each follow the standard angular momentum definition
commutation rule, but, in addition

[ES]:O , [LJﬁ]:m%ska

[szzm§%§k

These commutation rules specify that L and S act like vectors with respect to J but as
scalars with respect to each other.

J —>‘jmj>
L— ‘ £m€>
S —|sm,)
Coupled |jfsm;) vs. uncoupled |¢m,)|sm,) representations.

* matrix elements of certain operators are more convenient in one basis set than the

other

a unitary transformation between basis sets must exist
limiting cases for energy level patterns

(and.Zeemgr.l tuning rate.zs. ~_—— assignment

and intensities for transrmw

into eigenstates) determination of key parameters,
structure, and dynamics
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matrix elements of £ and s
Cnﬂ
h

H* =E()f-5 =

will each give a factor of 7

?-s

each will give a factor of 71

1. anomalous g - value of ¢
H*"" =—yB_ (0, +2s_)= —(mo)(z;/+\2sz)

(€., and wy are in units of rad/s)

* evaluate matrix elements in both basis sets

*look at energy levels and their Zeeman tuning ratein high field |yBZ‘ >C  limit

*and in low field |yBZ‘ < limit

. lower case for le™ atom angular momenta
Notation: )
upper case for many -e angular momenta

two different CSCOs

a) H J2,) 12,87 coupled basis
|nJLSM,) (can't be factored) recall tensor product

b) H® 1*,L_,S*,S,  uncoupled basis [ states and “entanglement”
|nLM )| SM) (explicitly factored))
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2. Coupled and Uncoupled Basis Sets have the same dimension

eachJhas 2J +1 M,’s

COUPLED J=L+S§ IL-S|<J<L+S %f‘
J/ S

L
Dimension
. i [ J= L+S 2(L+S8)+1 Every allowed value of J
every term in this sum has contributes 2L + 1 to sum. How
2L + 1 and there are 2S5 + 1 L+5-1 2(L+S_1)+1 many allowed values of J are
of them. The second term __J L+S—=2 2(L+S-2)+1 there?
shows that the S,S-1,..-s |
terms in sum all cancel. | 7 If L > S, there are 2S + 1
‘L—S| 2(|L—SD+] terms in sum.
(2S+DCQL +D+2[8+ 8 =D+ ()] =25 + DOL +1)
=0 i
total dimension
of basis set for
specified L and S
UNCOUPLED LM, SMg
e total dimension (2L +1X2S +1) again

There is a term by term correspondence between the 2
basis sets .. a transformation must exist:

Coupled basis state in terms of uncoupled basis states:

]]LSM]>=I§LaML LM, ) SMy=M,~M,

V

constraint

Trade J, M; for M;, Mg, but M; = M;, + M.

revised 17 August 2020 10:19 AM



5.73 Lecture #25 25-5

Going in the opposite direction: express uncoupled basis state in terms of coupled
basis states:

OR LML>|SMS>=]_L2:€S b, | JLSM, =M, +M,
Z;n( constraint

3.  Matrix elements of H® = 7[-5
A. Coupled Representation

J=L+S J°=12+S?+2L-S LandScommute because
they operate in different

vector spaces

J2 _ L2 _ SZ
L-S= Ty (useful trick!)

(J'L'S'M;|L-S|JLSM ) = (B> /2)[J(J + D)= L(L+1) = S(S+1)]8,,8,,8:58 .1

an entirely diagonal matrix.
B. Uncoupled Representation: work out all of the matrix elements.

L -S=L,S,+%(@L,S_+L.S,): because L,S_+L_S, = (L, +iL)(S, - iS))
diagonal off-diagonal + (L, - iLy)(Sx + iSy) =2(L,S, + Lysy)

(L'M;S'M|L-S|LM,SM) =16, 5 X

kan’t change L | fan’t change S | .
, 12
{[MLM@MWL(SM&MS ]+ E[L(L +1)-M[M, ] x

, 12 _ _
[S(S+1)-MM ] 8, .0 ¥ 5M§Mﬁl} AM, =—AM =0,+1
Non-Lecture notes for evaluated matrices
S=1/2, L=0,1,2 S, ’P,’D states
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NONLECTURE for HS° : COUPLED BASIS

25+1L]
’S,, HY opien = g@m 0)=0 a 1 x 1 matrix with matrix element = 0
2P]/z & 32 Hz(())UPLED = Et.mp —2 0 0 0 0 O
2 o wlo o o o I=12 @x2
0 0 1 0 0 O
0 0 0O 1 0 O
J=3/2 (4 4)
0 0 0O 0 1 0
0 0 0O 0 0 1
L ] JUJ+1) -L(L+1) -S(S+1) =
2
51/2) 0 1/2 3/4 0 3/4 0
2
Pm) 1 1/2 3/4 -2 —3/4 -2
2133/2) 1 3/2 15/4 =, —3/4  +1
2
(03/2) 2 3/2 15/4 -6 —3/4 -3
2
(DS/Z) 2 5/2 35/4 -6 —3/4  +2
J=3/2
7 -3 0 0 01]J0 O 0 O O O
Dy Homm =58 0 30 0[0 00000
C 0 0 -3 0/0 0000 0| 4xa
0O o0 0 3]0 00 0 0O
0O 0 O 012 00 0O00O0
O 0 O 01]J0 2 0 0 0O
0 0 0 0|0 02000 (6x6
O 0 O 01]J0 00 2 0O
O 0 0 01J]0 00 0 2 O
0O 0 O 01]0 00 0 0 2
J=5/2

center of gravity rule: trace of matrix =0
(obeyed for all scalar terms in H)
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2541 NONLECTURE for HSC : UNCOUPLED BASIS

S H oy =1G,.(1/2:0)=(0) (1x1)

P Hicowe =G, %

M, | M, M

3/2 11 172 1/2 | 0 0 0 0 0
1/2 |1 -1/2 0 |-1/2 274 0 0 0
1/2|1 0 1/2 0 |27 0 0 0 0
-1/21 0 -1/2 0 0 0 o 27| 0
-1/2| -1 1/2 0 0| 2" -1/2| 0
-3/2| -1 -1/2 0 0 0 0 0| 1/2

[

Each box along main diagonal is for one value of M; = M;, + M.

D Hicowm =hG,.x%

MS

1/2 1|0 0 0 0 0 0 0 0 0
-1/2 0 |-1 1 0 0 0 0 0 0 0
1/2 0 |1 1/2 0 0 0 0 0 0 0
-1/2 0 0 0 | -1/2 (3/2)" 0 0 0 0 0
1/2 0 0 0 |(3/2)" 0 0 0 0 0 0
-1/2 0 0 0 0 0 0 (3/2)1 0 0 0
1/2 0 0 0 0 0 (3/2)”* -1/2 | 0 0 0
-1/2 0 0 0 0 0 0 0 1/2 10
1/2 0 0 0 0 0 0 0 1 1|0
-1/2 0 0 0 0 0 0 0 0 0|1

End of Non-Lecture
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4. Matrix Elements of H*""" = —yB (L, +28S,)

A. Very easy in uncoupled representation

HZmen ==y B.(L'MS'M{|L +2S |LM, SM)

= —szh (ML +2M ) 5L’L5$’55M2M,_ 5M§MS

strictly diagonal

B. Coupled representation

L +2S_=J_+S,

z z

easy hard — no clue!

can’t evaluate matrix elements in coupled representation
without a new trick, discussed in item #5

5. If we wish to work in coupled representation, because it diagonalizes HS0, we
need to find the transformation between coupled and uncoupled representations.

JLSM )= MZL ay, [LMSMg =M, —M; )
lengthy procedure:  useJ, =L, +S, and orthogonality

Always start with an extreme M;, Mg basis state, where we are
assured of a trivial 1 to 1 correspondence between basis sets:

M, =L My=S, M,=M,+Mg=L+S, J=L+S
J=L+S LSM,=L+8)=|LM,=L SMy=S)

coupled uncoupled

Now the fun begins ...
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Apply J_ to both sides of the equation:

J M,

— —
JIL+S LS L+Sy=(L_+S_)|LM, =L SM=S)

[(L+S)(L+s+1) }”2 IL+8 LS L+S—-1=[L(L+1)-L(L-1)]"|LL -1SS)
—(L+ S)(L+S-1) ds(s+1)-s(s-1)] " 1zLSS -1

Thus we have derived an equality between one coupled basis state and a
specific linear combination of two uncoupled basis states.

There is only one other orthogonal linear combination that belongs to the
same value of M; + Mg = M;: it must belong to the [L+S—1LS L+S— 1>

. L
basis state. lowered J

NONLECTURE
Work this out for 2P using J- =L+ S~
PLSM)=(3/2 1 1/2 3/2)=[LM;SM)z|l 1 1/2 1/2)\

2”2|1 0 1/2 1/2)+|1 1 1/2 —1/2)
31/2

[TLSM, —1)=

now use orthogonality:

10 1/2 1/2)+2"1 1 1/2 -1/2
|T—1LSM, -1)=[1/2 1 1/2 1/2)= | 2 12)+2] / />.

72
3

Continue laddering down to get all four J = 3/2 and all two J = 1/2 basis
states.

1/2

1/2
3/2 1 1/2 4/2):(%) |1 0 1/2 —1/2)+[%j |1 1 1/2 1/2)

3/2 1 1/2 —3/2)=|1 1 1/2 —1/2)

1/2

1/2 1 1/2 1/2):—&]m|1 0 1/2 —1/2)+(§] L -1 12 1/2)

You work out the transformation for 2D!

Next step will be to evaluate HSO + HZ%eeman jn both coupled and
uncoupled basis sets and look for limiting behavior.
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