5.73 Lecture #23 23 -1

Angular Momentum Matrix Elements Derived from Commutation Rules

LAST TIME: * derived all [, ]=0 Commutation Rules needed to block diagonalize H:

p2 L2
H= —’J{ > +V(r)} in |nLML> basis sets
2u | 2pur

&, Levi-Civita antisymmetric tensor — useful properties, especially
for derivations involving components of angular momenta

* Commutation Rule DEFINITIONS of Angular Momentum and
“Vector” Operators [Ll_,LJ = ihz €L,

k
[L.V,|=iny eV,
k
Classification of operators: universality of angular factors of matrix
elements for 3D central force problems.

TODAY: Obtain all angular momentum matrix elements from the commutation
rule definition of an angular momentum, without ever looking at a
differential operator or a wavefuncton. Possibilities for phase
inconsistencies. [Similar generalization to derivation for angular parts
of matrix elements of all “spherical tensor” operators,Tc(lk).]

1. Define Components of an Angular Momentum using a Commutation Rule.

2. Define the eigenbasis for J2 and Jz. |Au) (we know the eigenbasis must exist,
but we start out not knowing anything about it).

3. Show 1 > p.

4. Raising and lowering operators (like af, a and x + ip for the harmonic
oscillator). J:[Au) gives eigenfunction of J: that belongs to the u + A
eigenvalue and the eigenfuncton of J2 that belongs to the A eigenvalue.

5. Must be at least one umIN pair of eigenstates of J- such that
J-(J+|Aumax)) =0
J+(J- |Aumn)) = 0
This leads to: h (72—1) ,A = h? g (§+ 1 ), and n 1s a positive integer.

6. Obtain all matrix elements of Jx, Jy, J=, but there remains. phase ambiguity
for the non-zero matrix elements.

7. Standard phase choice: “Condon and Shortley”.
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1. Commutation Rule I:Ji’Jj:':ihzgiijk

k
This is a general definition of angular momentum (call it J, L, S, anything!).
Each angular momentum generates a state space.

2. eigenfunctions of J2 and J, exist (Hermitian operators. Hermiticity is

guaranteed by symmetrization.)
J*[ M) = M dy)

I\ M) = | M)

but what are the values of A ,u?
J? and J, are Hermitian, therefore A ,u are real

3. find upper and lower bounds for u in terms of A : A >p?
(lul(J o | 2)|lp> =A-u’ Want to show that A—p2is > 0.
but J'=J+J +J]
F-L=1+J
A = (i + 3] w)

completeness

}\‘_MZZZ |:<7\“H‘JX‘7L,‘M,><}L,'LL,
Ao

3 M)+ (3 | ) (v

3 1]

We know that J? and J, are Hermitian because they were constructed by
symmetrization of classical mechanical operators.

Hermitian (A=A" or A= A;.): <7L,u,

o= |l )
any

i)l )
Aok po e

Thus A—pu*=0and A >p*=0

and from thesewe get u <AY%,u  >-A"?
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4. Raising/Lowering Operators

J.=J. i), (not Hermitian: J| = J_) (just like a,a?)
[9,.9.]=13,.9,1%i[3,.3, ]
=ihd, +i(-ihd,)=2h|J *id |
=t7d,
JJ, =Jd.J, +ad, right multiply by |Au)

I, (I )= I (I, | hpe)) £ 1 [ D)
=d p| M)t hd | dpe)
=(u £ )(J.|Me)), which means that

(J.|AwY) is an eigenfunction of J_ belonging to eigenvalue p + 7.
Thus J, “raises” or “lowers” the J_ eigenvalue in steps of 7.

Similar exercise for | J°,d, | to get effect of J, on eigenvalue of J°
(92,9, ]=[3*.9,]+i[J°.d,]=0 (We already knew that [ J*,d, ]=0)
I (.| au)) = J. (37| A)) = A(J.|Au)), which means that

(J.|Aw)) belongs to the same eigenvalue of J* as | Ap)

J. has no effect on A.
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upper and lower bounds on p are + ) 2

* J, raises/lowers p by steps of %

: 1 1
Since J. = E(L +J ) and J = E(L -J),

The only nonzero matrix elements of J; in the | Ap) basis set are those where

Apn =0, +h and A 1= 0. As for derivation of Harmonic Oscillator matrix elements,
we are not assured that all values of p differ in steps of i. Divide basis states
into sets, where the members of each set are related by integer steps of 7 in p.

5. For each set, there are My and Hy,y:A >p

Thus, for each set J Ay =0
J_|)\HMIN> =0

but  JJ, =(J,-i,) (I, +d,) =T+ +il I, —i)J,
=1+ +i[J,.J,]
=+ I +i(in])
=J.+J, -],

but Ji+J§:J2—J§,thus

JJ. =3 -)-n).
0=3.3, [ Ayax) = (37 =32 = 1) Aptya)
= (2= Wpax — lygax )| Ay

A= leleX + hHMAX

Similarly for [l

J+J—|A‘MMIN> =0
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J+J_:J2—J§+th
2
A= My — h““MIN

subtract 2 equations for 4

O:MI%/IAX - l’ti/IIN + h(MMAX + MMIN) now factor.
this equation
O:(MMAX + HMIN)(MMAX My T h)

Thus Pyax = —Hyiw OR Hyx =My =72
(impossible because pyax cannot be smaller than pyy)

Thus for each set of [AL), 1 goes from [y, tO Wy in steps of 7
Hyvax = Hyiy 772

n
Hyvax =§h

Thus p is either integer or half integer or both! |

Thus there will at worst be only two non-communicating sets of | Au) because
if u were both integer and 1/2-integer, each set would form a set of u-values,
within which the members would be separated in steps of 7.

Now, to specify the allowed values of A :

2
n n n(n
kzui/[AX-i_hMMAX:(Ehj +h(5h)=h25(5+1)

n .
let 5= Jj
Hyax =7
— _thq j either integer or
K MIN — h] ' half integer or both
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Rename our basis states

2 jmy = h%(j + 1) | jm)

3 [jm> = nm|jm)
valid for all angular momentum operators that are certified as an angular momentum by
satisfying the defining commutation rule [ A;,A; ]= ihy €, A, . We can define an |am, )

k

basis set for any angular momentum operator defined as above. We never need to look at the
functional form of the {\p ama} wavefunctions!

6. J, J,, J, matrix elements

recall page 23-3, but in new notation
|jmE1)= NiJ+|jm) (J« raises /lowers m by1)

normalization factor (to be determined below)

V= (mt 1m0y = (N3, [jm) (N3, ) = N2 (s N3, o
N/ =N;
=1 !

H+

+

ARV ALY

N,

VI =(0 i (1, ki )=+ i1 )]
=1 =02 +i(ih) )=1 -1 Fhl,
=17 -7 (J,+h)

use this to evaluate matrix
elements of J_dJ,

=[N [+ D=k (m(m 1)) ]

h arbitrary phase factor that
results from taking square root

3| m)=[jG+D=mOn £ )] | jm £ 1)

Usual phase choice is 6, =0 for all j,m:
known as the “Condon and Shortley” phase choice

(sometimes an alternative phase choice is used, 0, = +1/2, so be careful)
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standard phase choice: §, =0

(Jm'J.]jm) =188, [i( + D= m(m D]

1/2
(01‘ hg]} 6m m+1|: (] + 1) ( ’):l j remember matrix

elements of x and
p in harmonic
oscillator basis set?

Now, since J _ =1(J+ +J_)
2

(1o

o] >:§8j'{ mm+1[](]+1) m(m+1)]
5 m_l[j(j+1)_m(m_1)]1/z}

(o

two sign
surprises

y | >7128JJ{ m'm+1 [](] +1)— m(m+1)]1/2
=0,/ 1 [J(] +1)—m(m— 1)]1/2}

This phase choice leaves all matrix elements of J2, J. and J, real and positive.

[If, instead, you use 8, = +n/2, this gives J, real and J,J, imaginary.]

(|3 jm)=8.8 , 1w j(j+1)

_]_] m’'m

(jml3| jm)=knm  (Am=0 selects kJ,)

—

Summary | jm +11J] jm) =(f$1j)§[j(j+1)—m(mil)]l/2

iy o+, :%f(L +J_)+]’%(J+ -J)
1

=8 (F i)+ 29 (i +1)
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