
 

 

     

 

 
 

 
 

 

 

 

 

5.73 Lecture #20 20 - 1 

Density Matrices II 

Read CTDL, pages 643-652. 

Last time: ψ, ⎜ 〉, ρ = ⎜ 〉〈 ⎜ 
* coherent superposition vs. statistical mixture 
* � can have non-zero off-diagonal elements if it is a statistical mixture, 
that includes one coherent superposition state. 
* populations along diagonal, coherences off-diagonal 
〈A〉 = Trace(ρA) = Trace(Aρ) 

Today: Quantum Beats 
prepared state ρ 
detection as projection operator D 

What part of D samples a specific off-diagonal element of �? 
Optimize the magnitude of quantum beats 

“[partial traces]” 

* system consisting of 2 parts — e.g. coupled oscillators 
* motion in state-space vs. motion in coordinate space. 
* “entanglement” 

The material on 
pages 20–2, –3, –5, 
and –7 is an exact 

duplication of 
pages 19–5, –6, –7 

and –8. 
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5.73 Lecture #20 20 - 2 
Example: Quantum Beats 

Preparation, evolution, detection 

magically prepare some coherent superposition state Ψ(t) 

−1/ 2⎡
∑ 
n 

⎢
⎣ 

an 
2 ⎤e − iEnt !Ψ( )t = N ∑anψ n N = ⎥
⎦n Several eigenstates of H. 

Evolve freely without 
any time-dependent normalization 
intervention 

ρ ( )t = Ψ(t ) Ψ(t ) 

Case (1): Detection: only one of the eigenstates, �1, in the superposition is 
capable of giving fluorescence that our detector can “see”. 

⎛ ⎞1 0 ! 
0 0 0 
" 0 0 

⎜
⎜ 
⎜⎝ 

⎟
⎟ 
⎟⎠ 

Thus D = ψ
1 

a projection operator 
(designed to project out only |ψ1〉 
part of state vector or �11 part of �. 

ψ = 
1 

ρ = N 2 

⎛ 
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝ 

−i(E1−E2 )a 
2 

a a * e 
t ! 

" 
1 1 2 

2 
a

2 

2 
a

3 

# 

ρ
12 
= 1 Ψ Ψ 2 D picks out only 1st 

row of �.−iE1t ! +iE2ρ = N 2a e a * e t ! 

12 1 2 
⎛ 2 

* −iω t12 a a
1
a

2
e stuff !

1 

0 0 0 0 
" " " " 

⎞ 
⎟ 
⎟ 
⎟
⎟⎠ 

⎜ 
⎜ 
⎜
⎜⎝ 

D t =Trace(Dρ) = N 2 Trace 

2 
= N2 a

1 no time dependence! 
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5.73 Lecture #20 20 - 3 
case (2): a particular linear combination of eigenstates is bright: the initial 

state 2–1/2(�1 + �2) has 〈D〉 = 1. 
a projection operator.

1 How much of the originalD = 
2 
( + +)(ψ1 ψ 2 ψ1 ψ 2 ) state is present in the 

evolved state?1 = ⎡⎣ + + +ψ1 ψ1 ψ 2 ψ 2 ψ1 ψ 2 ψ 2 ψ1 ⎤⎦2 

⎡ ⎤⎛ ⎛⎞ ⎞⎛ ⎛⎞ ⎞ 0 0 0 !1 0 0 ! 0 0 0 ! 0 1 0 !
⎢ 
⎢ 
⎢ 
⎢
⎣ 

⎥ 
⎥ 
⎥ 
⎥
⎦ 

⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

+ 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

+ 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

1 

2 
1 0 0 0 
0 0 0 0 
" 0 0 0 

0 0 0 0 
0 0 0 0 
" 0 0 0 

0 1 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
" 0 0 0 

+= 

0 0 0" 

⎛ ⎞1 1 0 ! 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

1 

2 
1 1 0 0 
0 0 0 0 
" 0 0 0 

D = 

1 -1 0 0⎡ ⎛ ⎞
1 -1 1 0 0 

0 0 0 0 
0 0 0 0 

⎜
⎜⎜ 

⎟
⎟⎟⎠ 

if the bright state had been 2-1/ 2 (ψ1 − ψ 2 ), then D = 
⎢
⎢
⎢ 2

⎝⎣ ⎞
⎟ 
⎠ 

⎛
⎜ 
⎝
⎜ ⎟ 

1 why do we need to look at 
only the 1,2 block of �?N2Trace (Dρ Trace) = 

2 

2 
* +i(E1 −E2 )t ! ⎤N 2(Dρ ) = 

1 ⎡ a + a a e
1 1 211 2 ⎣⎢ ⎦⎥ 

2
* −i(E1 −E2 )t ! ⎤(Dρ ) = 

1 
N 2 ⎡ a + a a e

2 1 222 2 ⎣⎢ ⎦⎥ 
2 2

* t ⎤1 ⎡ ⎡ +iω12 ⎤N 2Trace(Dρ ) = a + a + 2Re a a e
1 2 ⎣ 1 2 ⎦⎦⎥2 ⎣⎢ 

beat note at ω12 

[if the bright state had been 2–1/2(ψ1–ψ2), then Tr(Dρ) would 
be the same except for –2Re[ ] ] 

2 (N2 = 1/2)If = 
2 (and a1, a2 real), Trace(Dρ) = N2 2 [1± cosω12t]a1 a2 a1 

QUANTUM BEAT! 100% modulation! 
Either 2N2∣a1∣

2 at t = 0 (+ sign) or 0 at t = 0 (– sign) 

⎤
⎥
⎥
⎥⎦ 
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5.73 Lecture #20 20 - 4 
2 2 

if a = a and a , a real 
1 2 1 2 

D 
t 2|N|2 |a1|

2 

bright state 2−1/2 (ψ1 + ψ2 ) 
⎛ 1 1 0⎞

D = ⎜⎜ 1 1 0⎟⎟
⎝ 0 0 0⎠ 

0 t 
2π 

ω12D 
t 

2|N|2 |a1|
2 

bright state 2−1/2 (ψ1 − ψ 2 ) 
⎛ 1 −1 0⎞

D = ⎜⎜−1 1 0⎟⎟
⎝ 0 0 0⎠ 

t0 

2 = e−t /τUsually a1 t 

what happens if 

try 

2π 

ω12 

— exponential decay: we have sinusoidal beats superimposed on 
exponential decay 

2a1 ≠ a2 
2 ? 

1− α2 , α2 as mixing fractions Terms in 
a1 

2 + a2 
2 = 1 Trace (Dρ) 

2a1a2 = 2 1− α2( )1/2 
α( ) 

2a1a2 

1 maximum beat amplitude 
2 2

occurs when =a1 a2
� 

2–1/20 1 revised August 13, 2020 
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5.73 Lecture #20 20 - 5 
So we see that the same Ψ(x,t) or �(t) can look simple or complicated depending on 
the nature of the measurement operator! The measurement operator is designed to 
be sensitive only to specific coherences (i.e. locations in �) which oscillate at ωij. 
THIS IS THE REASON WHY WE CAN SEPARATE PREPARATION AND 
OBSERVATION SO CLEANLY. 

Time evolution of ρnm and A 

Start with the time-dependent Schrödinger equation: 

∂⎧H Ψ = i! Ψ
∂Ψ ⎪ ∂tHΨ = i! ⎨ ∂∂t ⎪ H H = −i! Ψ⎪ ∂t⎩ 

for time-independent H we know −iE nΨ (t) = ∑a ψ e t ! 

n n 
n1. ρ(t) 

ρ(t) = Ψ(t) Ψ(t) 
2 

a time independentρ nn(t) = n Ψ(t) Ψ(t ) n = a n “population” in state 
n. 

* − i E( n −E )t ! * − iω tm = a a e nm a “coherence” whichρ (t) = a a e nm n m n m 
oscillates at ωnm 
(eigenstate energy

2. 〈Α〉t differences /ℏ) 

∂ΨRecall i! = HΨ
∂t 

∂ ⎡ ∂ ∂A ⎡ ∂⎤ ⎤A = Ψ Ψ + Ψ Ψ + Ψ A Ψ 
⎦⎥⎦⎥

A
∂t ⎣⎢∂t ∂t ⎣⎢∂t 

−1 ∂A ⎡ 1 ⎤ = ⎡⎣ Ψ H⎤⎦A Ψ + + Ψ A H Ψ 
⎦⎥i! ∂t ⎣⎢ i! 

i ∂A Heisenberg Equation 
= 
! 

[H, A] + 
∂t 

of Motion 

This is a scalar equation, not a matrix equation. It tells us about the motion of the 
“center” of a wavepacket. Note that nothing has been assumed about the time-
dependence of H. Motion of A. Example of one observable quantity. 
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5.73 Lecture #20 20 - 6 
Nonlecture 

∂ρ ∂ ⎡ ∂ ⎡ ∂⎤ ⎤ = ⎡⎣ Ψ Ψ Ψ + Ψ 
⎣⎢∂t 

Ψ⎤⎦ = 
⎦⎥ 
Ψ 

⎦⎥∂t ∂t ⎣⎢∂t 
⎡ 1 ⎡−1⎤ ⎤ = 
⎣⎢ i! 

Η Ψ + Ψ 
⎣⎢ i! 

Ψ Η 
⎦⎥⎦⎥ 

Ψ 

= 
1 [Ηρ − ρΗ]i! 

i! ∂
∂ 

ρ 

t 
= [Η, ρ] 

no requirement that H be independent of t. 

But if H is independent of t, then take matrix elements of both 
sides of equation. 

i!ρ" = j Hρ − ρH k
jk 

= E ρ − ρ E = (E − E )ρj jk jk k j k jk 

iρ" = − (E − E )ρjk j k jk ! 
You already knew this, but not so elegantly. 

i− (E −E )tρ (t) = e ! j k ρ (0) 
jk jk 

Time evolution of all coherences in the absence of 
external manipulation!

 External manipulation can cause coupling between 
differential equations. 
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5.73 Lecture #20 20 - 7 
If A commutes with H (regardless of whether H is time-dependent), there is 
no dynamics as far as observable A is concerned. However, if A does not 
commute with H, there can be dynamics of 〈A〉 even if both A and H are 
time-independent. 

Similarly can derive i! ∂ρ = [H(t ),ρ] evolution of ρ under H(t). This is a matrix equation.
∂t It specifies the time 

dependence of each
If H is element of ρ.
time 

dependent Often we have coupled differential 
equations where ρij is related to ρii, ρjjSummarize and perhaps other things too. 

〈A〉 = Tr(ρA) = Tr(Aρ) 

info about quantity info about state on which 
being measured measurement is to be made 

∂ρi! 
∂t 

= [H,ρ] 
time state 

evolution 

initial state : ρ ⎫
⎪ each expressed independently intime evolution of ρ: H ⎬ the form of matrices which can be 

observable quantity : A⎭⎪ easily read (or designed!). 

NMR pulse gymnastics 

statistical mixture states – use the same machinery BUT add the 
independent ρk matrices with weights pk that correspond to their fractional 
populations. [Populations have no phase.] 

ρ is Hermitian so � can be diagonalized by T†�T =ρ!. However, if � 
is time-dependent, T would have to be time-dependent. This 
transformation gives a representation without any coherences in ρ! 
even if we started with a coherent superposition state. No problem 
because this transformation will undiagonalize H, thereby 
reintroducing time dependences. 
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5.73 Lecture #20 20 - 8 
Systems consisting of 2 parts: method of partial traces 

e.g. coupled harmonic oscillators ⎛ recall anharmonically coupled oscillators, 
⎜
⎝

2k122q1q2 , ψ (q1,q2 ) = ψ v1
(q1)ψ v2 

(q2 )direct product representation 

ψ n1,n2(x1, x2 ) = ψ1,n1 
(x1 )ψ 2,n2 

(x2 ) 
ρ = ρ (1) ⊗ ρ (2) 

ρ  has 4 indices 

= ψ ψ n2 ′ n1 ′n2ρn1n2 ;n1 ′n2 ′ 
n1 

It is still a square matrix with [(n1max + 1)(n2max + 1)]2 elements. 

We might want to measure the expectation value of an operator 
that operates on both systems 1 and 2: A(1,2) 

A = Trace(ρA) 

= ∑ (ρA)n1n2 ;n1n2n1,n2 

Alternatively, we might want to measure the expectation value of 
an operator that operates only on system 1: call it B(1). 
To use the Trace(ρB) method, need the concept of partial traces 
and need to formally extend B so that it acts as a dummy operator 
on system 2. 

B̃ ( )1 = B( )1 ⊗1( )2 

diagonal with respect to n2 

Several types of initial preparation are possible: 
1. pure state of 1 ⊗ 2 (a “tensor product” state) 
2. statistical mixture in 1, pure state in 2. 
3. statistical mixture in both. 

Entanglement! Handout from 10/11/02. Science 298, p369 (2002). 

Several types of observation are possible: 
1. separate observation of subsystem 1 or 2 
2. simultaneous measurement of both systems 

⎞ 
⎟
⎠ 
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5.73 Lecture #20 20 - 9 

0 5 2 

0.5⎟
⎟ 

⎛ ⎞ 
⎜
⎜

H = 5 2 

2 0.5 20⎝ ⎠ 

This H has a 2 × 2 quasi-degenerate block and both
members of this block interact weakly with a non-
quasi-degenerate remote state. 

0 0 0 ⎞⎛ 
H(0) ⎜

⎜ 
⎟0 2 0
⎟
⎠20 

= 
0 0⎝ 

⎟
⎟ 

0 5 2 

0.5 

⎛ ⎞ 
H(1) ⎜

⎜
5 0= 
2 0.5 0 

22 

⎝ 

⎛ 

⎠ 

(2)(0.5) 00 + 2 
⎞ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎠ 

−20 − 20 Van Vleck 
Transformation2 

1 0.52 

19 −18
H(2) 0−= 

22 0.52 

20 
+ 
18 

⎛⎜⎝ 
⎞⎟⎠0 0 

(1) Hk 
(1) 

(2) Hnk n′H = ∑nn′ (0) + En 
(0) 
′in-block k En (0) 

out-of-block − Ek2 
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5.73 Lecture #20 20 - 10 

CTDL use this definition of B̃ (1) (page 306) to prove that 

B̃ (1) = Tr(ρ (1)B(1)) calculated as if 
system 1 were 
isolated from 

system 2 

for coupled H–O system 

operator of type (1,2) a†a a†a (a correlated property of two
1 1 2 2 

parts of the system) 
type (1) a†a

1 1

 or type (2) a†a
2 2

 or type (1 + 2) (a†a + a†a )1 1 2 2 

See Chem. Phys. Lett. 320, 553 (2000). 

Suppose t = 0 wavepacket is located at turning point of v2 = 5 in 
oscillator #2 and at x1 = 0 for oscillator #1 

Discuss inital preparation that gives 

Ψ(x1,x2 , t = 0) = 
∞
∑an2 
n2 =0 

0, n2 

dynamics within a polyad and between(0) 
polyads. Diagnostics in state and in 
configuration space. 

suppose we have ω1 = 2ω2 P = 2n1 + n2 polyads. 

and only the 0,P (0) state is "bright" (i.e. excitation is initially 
in oscillator #2) 

eigenvectors of H(1,2) 
expressed in H–O Basis 

set 
P/2 

need to write 0,P 
(0)

 as ∑b n n, P − 2n 
n=0 

T†HPTBasis Eigen (HP is polyad 
state state columns of T† Hamiltonian) 

The initial state is a coherent superposition of several polyads. Motion occurs 
in both coordinate space and in state space. Each kind of motion is sampled by 
a different class of diagnostic. 

revised August 13, 2020 
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5.73 Lecture #20 20 - 11 
−iEP ,nt/! 

so that we can use E in e
P ,n 

to express Ψ (x ,x ,t)1 2 

get motion of w.p. on 

V(x2) 

get motion of pieces of state vector within each Polyad P. 

Could want expectation values of quantities like N ,N ,P,x ,x x2 :
1 2 1 1 2 

N1 = a1
†a1 

N2 = a2
†a2 

⎫⎪
⎬
⎪⎭

state space 

2N1(t) + N2(t) = P 

coordinate space 
⎧⎪
⎨
⎪⎩ 

2−1/2 a1 + a1
†x1 = ( ) 

x1 x2
2 == 2−3/2 (a1 + a1

†)(a2 + a†
2 )2 
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