
 

 

  
 

                

     

 

 

wiggly

5.73 Lecture #2 2 - 1 
Infinite Box, �(x) Well, �(x) Barrier. 

Last Time: free particle V(x)=V0 

ψ = Aeikx + Be–ikx general solution 

A,B are complex constants, determined by “boundary conditions” 

pk = (from e ikx , an eigenfunction of p̂ for a free particle, and the real number, !k = p,
! 

is the eigenvalue of p̂) 

⎡ ) 2m ⎤
1/2 

k = (E −V0 for E ≥V0⎣⎢ !2 ⎦⎥ 

2probability P(x) =ψ *ψ = A + B 
2 
+ 2Re(A* B)cos2kx + 2Im(A* B)sin2kx !#######"#######$distribution !#"#$ 

const. wiggly, real at all x 

only get wiggly stuff when � contains 
a superposition of 2 or more different 
values of k are superimposed. In this 
special case we had the two values of 

TODAY k: +k and –k. 

and and 

1. infinite box 
2. δ(x) well 
3. δ(x) barrier (non-lecture) 
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5.73 Lecture #2 2 - 2 

What do we know about a ψ(x) for a physically realistic V(x)? 
ψ(±∞) = ? 
ψ * (x)ψ(x) for all x? 

∞ 
ψ * (x)ψ(x)dx?∫−∞ 

Continuity of ψ and dψ/dx? 

Computationally convenient potentials have steps and flat regions. 

infinite step 

finite step 

infinitely high but infinitely thin step,“δ-function” 

ψ continuous 

dψ d2ψ 
not continuous for infinite step, and not for δ-functiondx 

,
dx2 

dψ 
is continuous for finite step

dx 

More warm up exercises 

1. Infinite box 

V(x) 

0 L x 

Aeikx + Be− ikx ψ(x) = = C cos kx + Dsin kx [C = A + B, D = iA − iB] 
Where do these 2 equations come from? Be sure you can derive (and never 
forget) these 2 equations for C and D. 

Boundary conditions: 

ψ(0) = 0 ⇒ C = 0 

ψ(L) = 0 ⇒ kL = nπ n = 1,2,… (why not n = 0?) 
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 nser =nπ oun ary con on.

5.73 Lecture #2 2 - 3
2m nk2 = (E −V0 ) = 

2π2 

V0 
= 0

recall !2 L2 here. 
I t kL b d ditiInsert kL = n� boundary condition 

2 !
2π2 ⎡ h2 ⎤ n = 0 would be En is integer multiple

2En 
= n = n ⎢ ⎥ empty box! of common factor, E1.2mL2 

⎣8mL2 
⎦ Important for many 

∞ # of bound levels wavepacket problems! 
E1 

normalization (P=1 for 1 particle in well) 
Lbecause ∫ sin2(nπx/L)dx = L/2 

L ⇒ |D|= (2/L)1/2 0 
1 =| D |2 ∫0 

dxsin2(nπx / L) 
(2/L)1/2 iaD = e! 

ψ n (x) = (2 / L)1/2 sin(nπx / L) arbitrary
phase
factor 

cartoons of ψn(x): what happens to {ψn} and {En} if 
we move the well: 

left or right in x? 

up or down in E? 

There is always a short-cut. A picture is often more informative than equations. 

Infinite well was easy: 2 boundary conditions plus a normalization requirement. 

Generalize to stepwise constant potentials: in each V(x)=constant region, 
need to know 2 complex coefficients and, if the particle is confined within a 
finite range of x, there is quantization of energy. 

* boundary and joining conditions 
* normalization 
* overall phase arbitrariness 

So next step is to deal with case where boundary conditions are not so 
obvious. δ(x) well and barrier. 
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5.73 Lecture #2 2 - 4 

0 x 

V(x) 

a has units Energy x Length 
V(x) = –a 

 

 

 

 

 

 

 
 

 

  

  

 

 

δ(x) a > 0 (because, as we will see, δ(x) has 
units of reciprocal length) 

= 0 everywhere except V(0) = –a “∞”, a is the 
“strength” of the �-function well 

⎛ 2m 

%2 
ψd2ψSchrödinger = –⎜

⎜⎝dx2 
(E + aδ(x)!#"#$ 

E−V ( x ) 

⎞ 
⎟
⎟⎠Equation 

+ε +ε 
Integrate: d 2ψ ⎡ ⎛ 2mE 2ma ⎞ ⎤lim lim dx ψ(x) + δ(x)ψ(x)

ε→0 ∫ dx2 dx = − 
ε→0 

⎢ ∫ ⎝⎜ !2 !2 ⎠⎟ ⎥ 
−ε ⎣−ε ⎦ 

dψ dψ–LHS = = size of discontinuity indx x=+ε dx x=−ε dψ at x = 0 
dx 

⎡ 2ma ⎤RHS = 0 − ψ ( )0 
⎣⎢ !2 ⎦⎥ 

because because, by the definition of a δ–fn, 
2mE ψ(0) ∫ δ(x)ψ(x)dx = ψ(0) 
!2 

is finite and the or, more generally
integral is over region 

∞
of length 2� ≈ 0. ∫ δ(x – a)ψ(x)dx = ψ(a)–∞ 

This is a really important derivation. You will want to 
remember it! 
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5.73 Lecture #2 2 - 5 

Since the potential has even symmetry with respect to x → –x, ψ(x) must be even or 
odd (not a mixture) with respect to x → – x, thus ψ(x) = ±ψ(–x). If ψ(x) is an even 
function, there must be a cusp in ψ(x) at x = 0 

ψ(x) 

0 

OR 

ψ(x) 

BUT NOT 

ψ(x) cannot be odd at x = 0 and also 
dψ

have a discontinuity in at x = 0.
dx 

dψ(+) dψ(–) 2ma 
– = – ψ(0) 

dx dx !2 

ψ(x) is 

continuous 

ψ(x) is 

continuous 

ψ(x) is not 

continuous 

at x = 0 

So what happens 
when Ψ(x) 
is an odd function? 

Thus we have a new connection 
dψ

condition on 
dx 

since there must be + reflection symmetry for an even ψ(x) 

dψ(+) dψ(–) 
= – 

dψ(±) 
dx 

dψ(+) 
dx 

dx dx 

ma = ∓ ψ(0) This is the δ-function 
"2 

joining condition for a 
dψ(−) 2ma symmetric potential.− = − ψ(0) 

dx "2 

Now find the eigenfunctions and eigenvalues.  Standard procedure: divide 
space into regions and match ψ and dψ/dx across boundaries. 
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5.73 Lecture #2 2 - 6 

0 x 

V(x)=0 
|x| > 0 

Region I Region II 

Let E < 0 E = − E 

= ALe
+κx + BLe

−κx (8 unknowns, because A and B canψL ≡ ψ I be complex numbers) 
= ARe

+κx + BRe
−κxψR ≡ ψ II 

⎡ | E | 2m ⎤
1/2 (THIS IS WHAT WE ALWAYS DO

κ = 
⎣⎢ !2 ⎦⎥ WHEN k IS IMAGINARY) 

κ = ik 

unknowns 
determined 

ψ(+∞) = 0 AR = 0 (2) 
= Ae ρx 

ψ(–∞) = 0 BL = 0 (2) 
ψ L 

Ae −ρxψ R = 

ψL(–ε) = ψR(+ε) AL = BR ≡ A (2)
arbitrary phase (1)
normalization (1) Done! 

(8) TOTAL 
dψ R (+) −ma required discontinuity in dψ dx  at x = 0.= −κAe−0 = ψ(0) 

dx !2 

A 
ma ∴κ = 
!2 

dψ L (–) +ma = +κAe+0 = ψ(0) 
dx !2 

A 

ma 
again κ = 

!2 
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5.73 Lecture #2 2 - 7 

Only one acceptable value of � → one value of E < 0 
ma κ = 
!2 

2κ2!2 ma E = = = −E
2m 2!2 

maE = – 
2!2 

Actually, the above solution was specifically for an even ψ(x). What about 
an odd ψ(x) for a V(x) with a �(x) at x = 0? No calculation is needed. Why? 

Normalization of ψ% 

1 = 
∞ 
| ψ |2 dx ∫−∞ 

= Ae− max/!2ψ R 

∫0
2 e 2 

⎝⎜ 2ma⎠⎟
1 = 2 

∞ 
| A | −(2ma !2 )xdx = 2 | A | 

⎛ !2 ⎞ 

1/2 see Gaussian⎛ ma⎞A = ± Handout
⎝⎜ !2 ⎠⎟ 

1/2 only one bound
⎛ ma ⎞ −ma|x|/!2 level, regardlessψδ = ±⎜ ⎟ e
⎝ !2 ⎠ of magnitude of a 

large a, narrower and taller ψ% 

There is a continuum of ψ's possible for E > 0. Since the particle 
is free for E > 0, specific form of ψ must reflect specific problem: 

e.g., particle probability incident from x < 0 region. It is even 
more interesting to turn this into the simplest of all barrier 
scattering problems. See Non-Lecture pp. 2-8, 9, 10. 
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5.73 Lecture #2 2 - 8 
Nonlecture 

Consider instead scattering off of V(x) = + aδ(x) a > 0 

V(x) = +aδ(x) 

x0 
ikx –ikx 

⎜
⎛
⎝ 

ψL = ALe + BLe 
2mE 1/2 

⎟
⎞
⎠

ikx –ikx k =ψR = ARe + BRe !2 

In this problem let's assume that we have flux entering exclusively from the left. 
The entering probability flux is |AL|2. 

Two things can happen: 

1. transmit through barrier ∝ |AR|2 

2. reflect at barrier ∝ |BL|2 

There is no way that |BR|2 can become different from 0. Why? (Hint: where does the 
flux enter the system and in what direction is it flowing?) 

Our goal is to determine |AR|2 and |BL|2 vs. E. 

ψL(0) = ψR(0) 
continuity of ψ% 

AL + BL = AR + BR but BR = 0 AL + BL = AR 

dψR (+0) dψL (−0) 2ma discontinuity of d
dx 
ψ at δ-function ⎡ ⎤− −

⎦⎥ 
= + ψ(0) 

⎣⎢ dx dx !2 

2ma ikAR − (ikAL − ikBL ) = AR ψR(0)
!2 

AR = AL + BL 2ma ik (AL + BL ) − ik (AL − BL ) = (AL + BL )!2 

ψL(0) 
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5.73 Lecture #2 2 - 9 
2ikBL = 

2ma (AL + BL )!2 

⎛ 2ma ⎞ 2ma BL 2ik − AL⎝⎜ !2 ⎠⎟ = 
!2 

AL !2 ⎛ 2ma ⎞ ik!2 

= 2ik − −1 ≡ α ⎝⎜ ⎠⎟ = 
BL 2ma !2 ma 

ik!2 

α +1 = 
ma 

BLAR = AL + BL = AL + BL = αBL + BL = BL (α +1) 
BL 

α = AL/BL⎛ ik!2 ⎞
AR = BL ⎝⎜ ma ⎠⎟ 

2 (moving to right in R region)ARTransmission is T= 2 : (incident from left in L region)AL 

2 (moving to left in L region)BLReflection is R= 2 : (incident from left in L region)AL 

What is T(E), R(E)? 

2 k2!4 
2 2!2 EAR 

2 2mE !42 = = =BL BL BLm2a2 !2 m2a2 ma2 

⎛ AL ⎞ ⎛ AL ⎞ 
* 

⎛ ik!2 ⎞ ⎛ ik!2 ⎞ 
= −1 − −1 

⎝⎜ BL ⎠⎟ ⎝⎜ BL ⎠⎟ ⎝⎜ ma ⎠⎟ ⎝⎜ ma ⎠⎟ 

2 1/2 k 2!4 2!2E + ma2 ⎡ ⎛ 2mE ⎞ ⎤AL 
2 = 

m2a2 +1 = ⎢k = ⎝⎜ !2 ⎠⎟ ⎥ma2 ⎣ ⎦BL 

ma2 ⎡ 2!2E ⎤
−1 

R(E ) = = ⎢ +1⎥ decreasing to zero as E increases
2!2E + ma2 

⎣ ma2 
⎦ 

2!2E ⎡ ma2 ⎤
−1 

T (E ) = 
2!2E + ma2 = 

⎣
⎢ 2!2E 

+1 
⎦
⎥ . increasing to one as E increases 

R(E ) +T (E ) = 1 
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5.73 Lecture #2 2 - 10 

Note that: R(E) starts at 1 at E = 0 and goes to 0 at E → ∞% 

T(E) starts at 0 and increases monotonically to 1 as E increases. 

Note also that extending the equations for R(E) and T(E) to E < 0, we see at 

E = − 
ma2 

R →∞ as E  approaches – ma2 2!2 from above and then 
2!2 

2!2 !changes sign as E  passes through – ma2 

This is the energy of the bound state in the δ(x)-function well 

problem. 

This tells you that something special happens when you “extend” the scattering 
calculation to scattering off a V(x) at the energy of a bound state. This is strange because 
it is difficult to imagine scattering at E < 0. 

See CTDL Chapter 1 Problem #3b (page 87) for a 
related problem 
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