5.73 Lecture #2 2-1
Infinite Box, §(x) Well, 6(x) Barrier.

Last Time: free particle V(x)=V,
v = Aelkx + Beikx general solution

A,B are complex constants, determined by “boundary conditions”

k= % (from e™, an eigenfunction of p for a free particle, and the real number, 7ik = p,

is the eigenvalue of p)
2m 172
k:[(E—Vo)?} for E >V,

probability

distribution

P(x)=y*v =|A| +|B| +2Re(4* B)cos2kx+2Im(A* B)sin2kx
'Vl latall
const. wiggly, real at all x

only get wiggly stuff when i contains
a superposition of 2 or more different
values of k are superimposed. In this

special case we had the two values of
TODAY k: +k and —k.

L e o |

1. infinite box
2. d(x) well
3. 0(x) barrier (non-lecture)
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5.73 Lecture #2 2-2

What do we know about a y(x) for a physically realistic V(x)?
Y(teo) =2

v * (x)y(x) for all x?

J v (x)w(x)dx?
Continuity of y and dy /dx?

Computationally convenient potentials have steps and flat regions.

infinite step

finite step

infinitely high but infinitely thin step,“8-function”

Y continuous
dy d’y . . .
g/? not continuous for infinite step, and not for d-function

d : : ..
&W 1s continuous for finite step

More warm up exercises

1. Infinite box

V(x)

v

0 L X
y(x)= Ae™ + Be ™ = Ccoskx + Dsinkx [C: A+B,D=iA—iB]

Where do these 2 equations come from? Be sure you can derive (and never
forget) these 2 equations for C and D.

Boundary conditions:
y(0)=0=C=0
W(L)=0= kL =nm n=12,..  (whynotn=0?)
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5.73 Lecture #2 2-3

2m | n’n’
K=(E-V,) 5= V,=0
recall ( 0) h? 12 0 here.
Insert kL = nm boundary condition
22 2 n =0 would be E is integer multiple
L h'm .| h n
E =n ol " | 82 empty box! of common factor, E;.
Important for many
oo # of bound levels i wavepacket problems!

1

normalization (P=1 for 1 particle in well)

D= (2 /L) because _[(? sin?(nmx /L)dx=L/2
D=(2/L)" e*

v, (x)=(2/L)"sin(nmx /L) arbitrary

phase
factor

1=IDP jOdesinz(nnx/L) —

cartoons of y,(x): what happens to {y,} and {E,} if
we move the well:

left or right in x?

up or down in E?

There is always a short-cut. A picture is often more informative than equations.

Infinite well was easy: 2 boundary conditions plus a normalization requirement.

Generalize to stepwise constant potentials: in each V(x)=constant region,
need to know 2 complex coefficients and, if the particle is confined within a
finite range of x, there is quantization of energy.

* boundary and joining conditions
* normalization

* overall phase arbitrariness

So next step is to deal with case where boundary conditions are not so
obvious. O(x) well and barrier.
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5.73 Lecture #2 2-4

v

V(x)

a has units Energy x Length
V(x) = —a|8(x)| a>0 (because, as we will see, d(x) has

units of reciprocal length)

= 0 everywhere except V(0) = —a “e0”, a is the
“strength” of the §-function well

7=

2
Schrodinger dy _ —[(E+a6(x)}2—ml//
X —_— hz

Equation EV()

+& 42

. . d | f 2mE 2ma
Integrate: g{}_{ dx‘l’ dx = —lgl_I>1;)1|::[dX( 2 VO S(x)\lf(x)ﬂ
d d
LHS = an 4V size of discontinuity in
dxlive  dxl—e d
W oatx=0
dx
RHS =|0 2ma, o
because because, by the definition of a & —fn,
2mE
7 Vo) J30W(x)dx = w(0)

is finite and the
integral is over region
of length 2¢= 0. |7 8(x - a)y(x)dx = y(a)

or, more generally

This 1s a really important derivation. You will want to
remember it!
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5.73 Lecture #2 2-5

Since the potential has even symmetry with respect to x > —x, W (x) must be even or
odd (not a mixture) with respect to x > —x, thus ¥ (x) =+V¥ (—x). If ¥ (x) is an even
function, there must be a cusp in W (x) at x=0

Y (x) 1s
W (x) i continuous
0
OR
Y (x) 1s
v (x) | |
continuous
BUT NOT
VY (x) 1s not
i continuous
Y(x) cannot be odd at x = 0 and also
dy atx=0
have a discontinuity in n at x=0. So what happens
when Y(x)
1s an odd function?
dy(+) dy(-) 2ma Thus we have a new connection
dx - dx - hz W(O) J
condition on d_w
X

since there must be + reflection symmetry for an even V (x)

dy(+)_ dy()
dx dx
dy(®) _ ¢m_fw(o) This is the d-function
dx h joining condition for a
dy(+) dy(=) __ 2ma w(0) symmetric potential.
dx dx h?

Now find the eigenfunctions and eigenvalues. Standard procedure: divide
space into regions and match y and dy/dx across boundaries.
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5.73 Lecture #2 | 2-6
Region I i Region II
|
X
V(x)=0
lx| >0
Let E<0 E=-|E|

Y, =y, =A™ +Be™

be complex numbers)

Yp =Y, =Age™ +Bre ™

[|E|2m
K=

h2
K =1k

Y(+2) =0
WY(—o0) =0
Y1 (=€) = Yr(+€)

arbitrary phase

normalization
d + . —ma
%U =—kde” =—y(0)
x h
A
_ ma
2
d"i; O fete ="00)
x h
A
) ma
again K=—=

(8 unknowns, because A and B can

(THIS IS WHAT WE ALWAYS DO

WHEN £ IS IMAGINARY)
unknowns
determined
Ay=0 (2) v = AeP”
B.=0 @ .
A =Bg=A (@
(1)
(I)  Done!
(8) TOTAL

required discontinuity in dy/dx atx=0.
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5.73 Lecture #2 2-7

Only one acceptable value of k — one value of E <0
ma

K:?
Kh* ma’
|E| = = —_F
m 2h

E=-—

27
Actually, the above solution was specifically for an even y(x). What about
an odd y(x) for a V(x) with a §(x) at x = 0? No calculation is needed. Why?

Normalization of W

1= lyPax
Wy =Ae ™"
=214k P e = 2148 (22;]
A= i(%) Handout

1/2 only one bound
_4| Mma —malxl/#? level, regardless
Vs == K2 of magnitude of a

large a, narrower and taller v

There 1s a continuum of W's possible for E > 0. Since the particle
1s free for E > 0, specific form of ¥ must reflect specific problem:

e.g., particle probability incident from x < 0 region. It is even
more interesting to turn this into the simplest of all barrier
scattering problems. See Non-Lecture pp. 2-8, 9, 10.
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5.73 Lecture #2 2-8

Nonlecture

Consider instead scattering off of V(x) = + a 6(x) a>0

V(x) = +a d (x)

v

0 X

Vi, = ALeikX + BLeiikX 12
ikx ikx k= 2mE

Y = Age  + Bge |\ T2

In this problem let's assume that we have flux entering exclusively from the left.
The entering probability flux is | A; | 2.

Two things can happen:

1. transmit through barrier o« |Agl?

2. reflect at barrier o< | By |?

There is no way that |Bg|? can become different from 0. Why? (Hint: where does the
flux enter the system and in what direction is it flowing?)

Our goal is to determine |Ag|? and |B; |2 vs. E.

Vv (0) = vi(0)

@ continuity of W

AL+BL=AR+BR butBR:O AL+BL=AR
discontinuity of vy at d-function
dy,(+0) dy,(-0) | 2ma YOk
- —[=* ) W(O)
dx dx h
) ) ) 2ma
1kA, — (ikA, — IkB, )= e A, <—VR(0)

Ar=A;, + B, > ma
ik(AL +BL)—1'k(AL —BL):T(AL +BL)

v1,(0)
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5.73 Lecture #2

2ikB, :%(AL+BL)

. 2ma 2ma

BL(ZII(— h2 ):7141“

2 . 2
iz h (21_1(_211;3):1](?1 =g
B, 2ma h ma

ikh*
o+1l=

ma

B
A=A, +B, =ALB—L+BL =oB, +B, =B, (0.+1)

N
] =A;/B
ikh? @ = A/b
A :BL( j
ma
2
L A moving to right in R region
Transmission is T=| R|2 : ( : g01s : = : )
| AL| (incident from left in L region)
2
o B moving to left in L region
Reflection is =L—£gu .( _ 5 : & _)
|A,| (incident from left in L region )
What is T(E), R(E)?
2 » k*h? B »2mE h* _ 2 2W°E
‘AR| _|BL‘ 2 2 _|BL‘ 2 2 2 _| L| 2
a h™- m-a ma
ANA) (ke ik
B, \ B, ma ma
A" & 21’E + ma’ 2mE "
T=—5 5 tl= 2 k= 2
|BL| m-a ma h
ma’ 2hH*E -
R(E)= = +1 decreasing to zero as E increases

2h°E + ma* | ma?

T(E) 2h°E :{ma 1} -

= +
OWE +ma*> | 2h°E
R(E)+T(E)=1

increasing to one as E increases
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5.73 Lecture #2 2-10

Note that: R(FE) starts at 1 at E =0 and goesto 0 at £ — oo

T(FE) starts at 0 and increases monotonically to 1 as E increases.

Note also that extending the equations for R(F) and T(FE) to E <0, we see at

2
S R —> oo as E approaches —ma?/2h* from above and then

T 32
2n changes sign as E passes through —ma?/2h%!

This is the energy of the bound state in the 8 (x)-function well
l problem.

This tells you that something special happens when you “extend” the scattering
calculation to scattering off a V(x) at the energy of a bound state. This is strange because
it 1s difficult to imagine scattering at E < 0.

See CTDL Chapter 1 Problem #3b (page 87) for a
related problem
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