5.73 Lecture #19 19 - 1

Density Matrices I
(See CTDL pp. 252-263, 295-307**, 153-163, 199-202, 290-294)

Last time: Variational Method
Linear variation: 0= ‘H - SS‘ =0= ‘I:I - 81‘

qu)”dc

[Variational method vs. perturbation theory]

TODAY
¥ phase ambiguity — but for every observable each state always appears as a
bra and a ket.
What is needed to encode motion in the probability density? A superposition
of eigenstates belonging to several different values of E.
Coherent superposition vs. statistical mixture: think about polarized light.

p no phase ambiguity in density matrix, |y)(y|, an N x N matrix
* “coherences” in off-diagonal position
* “populations” along diagonal

(A)="Tr(pA)=Tr(Ap)

Quantum Beats

prepared state - p
detection > D (detect or destroy coherences)

— p()

< A> equations of motion

d i oA
d_<A> = %<[H’A]>+<8—> expectation value
g ! each element of pencodes important information
d
— ih—p = [H(t),p] * state: P
dt * evolution: H
* detection: D
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Let us define a quantity called “Density Matrix”
p=|v){v]

y can be any sort of QM wavefunction
* eigenstate of H
* coherent superposition of several eigenstates of H

but y cannot represent a statistical (i.e. incoherent) mixture of several different y’ s

However, p can represent a statistical (i.e. equilibrium) mixture of states!
p=2.p W v, |=2pp
k k

Yp =1 tprobabﬂity of each contributing term to p

Example

* one beam of linearly polarized light, with its polarization axis at 45°

(& -field)

A

450 & =2‘”2(ax +éy)

X

* two superimposed beams of linearly polarized light, 50% along é_,

50% along €. Call this a statistical mixture state.

These 2 cases seem to be identical if you make 2 measurements with
analyzer polarizers along €, then é,. But the 2 cases are different with
respect to 2 measurements w1th analyzer polarizers along 27! (ex + éy)

A

and then along 27! ( €x ey).

In the statistical mixture, it does not matter how the analyzer is oriented.
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What are the properties of p ?

1. p for a pure state is Hermitian with positive elements along the diagonal
and other elements off-diagonal. p E|\|I><l|!’ so evaluate matrix elements of p

In any basis set,

Pom = <n‘ W> <\|" m> ’W> = ch but H eigenbasis

n m 1s most useful.

can expand | )
")

*

but (p*) =p; = | (m]w){|n))

(v m)inlw) = (n]w)(w|m)=p,

. T ~. p passes the Hermiticity test that all
S P =P observable quantities must pass!
So if p is observable, what does it tell us?

. 2
= = = >
P = {r[w)(¥]n) = ¢, =[e [ 20
positive along diagonal
2. 2 x 2 Example Coherent Superposition vs. Statistical Mixture
| W> — 012 1 a coherent superposition state
+1
1 1 1 1 =1
oo 11w )L
2\ *1 20 1 1
Trace p =1
oo lf 2 2 ) 11 #
4{ 2 2 20 1 1
p’=p

Now consider a statistical mixture state.
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pu 35030

= %G) (1)) trace p=1

|The difference is in the off-diagonal positions of p |

diagonal elements  — “populations” (statistical mixture states have
off-diagonal elements — “coherences” strictly diagonal p)

Expectation values of A in terms of p

completeness

N
< > <\|I‘A‘ > < |k><k‘A‘ ]><] | \|j> these are three simple

numbers and can be
- <] "’> <\|’ k> Ay

rearranged in any order.
ik P,

a fantastic labor
= (pA) = Trace (pA) saving and insight
JJ

generating result!

(AY =ITrace (pA)!

Could have arranged the factors ZAkj < Jjl 1|1><w | k> = Z(Ap)kk =Trace(Ap)
k

J.k
(A) = Trace(Ap)= Trace(pA)

So p describes the state of system, A describes a measurement
to be made on the system

simple prescription for calculating (A)

The separation between initial preparation, evolution, and
measurement of a specific observable becomes very convenient
and instructive.
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Example: Quantum Beats

Preparation, evolution, detection

magically prepare some coherent superposition state W(t)

-1/2
2
a

n

¥()=NZaw,e "y s
N Several eigenstates of H.

Evolve freely without

any time-dependent normalization
intervention

pl1)=[¥O)(¥ ()

n

Case (1): Detection: only one of the eigenstates, ¥, in the superposition is
capable of giving fluorescence that our detector can “see”. (Build a
detector matrix out of the same form as the selected bright state in p.)

1 . .
Th 0 a projection operator
us D= ‘ lI11><Wl‘ = 000 (designed to project out only the |y,) part
: 0 0 of the state vector or the p,, part of p.
|31’2 4 a;e_j(El_EZ)t/h
2
p = N2 |32|
2
|a|

This particular D picks]

P, = <1 ‘P><‘I"2> out only 1st row of p.
p12 — Nza1 e—z’E]t/ha;eﬂEzt/h

2 * it
|al| a,a,e " stuff
(D) =Trace(Dp)=N’Trace| 0 0 0 0

N | a1|2 no time dependence!

You do not need to work out the full Dp matrix product!
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case (2): a particular linear combination of eigenstates is bright: the initial (i.e.
at t = 0) state 2-V2(¢, + ¢,) has (D) = 1.
a projection operator.

1 How much of the original
D= 5(|\V1>+‘\|12>)(<\I11‘+<W2|) state 1s present in the
- evolved state?
:§_|‘|’1><W1‘+|\|’2><\V2|+‘W1><\|’2|+|W2><\|’1‘:|
| 1 0 0 - 0O 00 - o1 0 - 0 0 0 -
:l 000 O + 01 0 O + 00 0 O + I 0 0 O
2[ 0 0 0 O 00 0 O 0 00 O 0 00 O
i 0 0 O 0 0 O 0 0 O 0 0 O
1 10 -
p=4/ 1 1.0 0
20 0 0 0
0 0 O
1 -1 0 O
ifthebrightstatehadbeenZ']/z(\pl—\|J2), thenD:% _01 (1) 8 8
0O O 0 O
| ) why do we need to look at
Trace (Dp ) ZEN Trace only the 1,2 block of p

| R v +i(E—E)/n The 1,2 block is the only
(Dp)“ = EN al’ taae (o) } part of D that picks out
something that can

| R « —i(E~E,)i/n appear along the diagonal
(Dp)zz_EN a2‘ taae :| of Dp

2

Trace(Dp) = %NZ i al‘z +‘a2|2 + 2Re[afaze+i$lzt}}

beat note at ®,

[if the bright state had been 2-2(W ,—Ww ), then Tr(D p ) would
be the same except for —2Re[ ] ]

If |q, |2 = |a2|2 (and a,, a, real), Trace(Dp) =N’ |al|2 [1+cosw,t] (N2=1/2)

QUANTUM BEAT! 100% modulation! Either 2N%[q,[2att=0o0r 0 att=0.
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So we see that the same W (x,t) or p(t) can look simple or complicated depending on
the nature of the measurement operator! The measurement operator is designed to
be sensitive (can detect or “destroy” a particular coherence) only to specific
coherences (i.e. locations in p) which oscillate at ;. THIS IS THE REASON WHY
WE CAN SEPARATE PREPARATION AND OBSERVATION SO CLEANLY.

Time evolution of p, and <A>

Start with the time-dependent Schrédinger equation:

d
HY)=ih—¥Y
)= in )

., 0¥
HY = Iha— a
t <‘P| H= _jha_<\{l| Hermitian conjugate.
t
for time-independent H we know ‘P(;) = Zan\lfne_iE”t/h
n

L p(t)
p)=[FO)(F()
p (t)= <n‘ ‘P(t)><‘}’(t)‘ n> = ‘an‘z a time independent

“population” in state n.

_ « —i(E—E )t/n _ * o t
p, (t)=aa e =aace a “coherence” which
oscillatesat o__
2. (A), (eigenstate energy
differences /i)

Recall jha—‘P =HY

d d oA d
5<A>__5<LP‘ A¥)+ YIS +(P|A 5|L}'>
-1 oA 1

= £<‘P|H AY)+ = +(P|A i—hH|T>

_i<|:|.| A:|>+ a_A Heisenberg Equation
- 7 > ot of Motion

Note that nothing has been assumed here about the time-dependence of H. This
is a simple prescription for calculating the motion of (A). One observable
quantity.
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If A commutes with H (regardless of whether H is time-dependent), there 1s
no dynamics as far as observable A is concerned. However, if A does not
commute with H, there can be dynamics of (A) even if both A and H are
time-independent.

Similarly, can derive i#— 9P =[H(¢),p], which describes evolution of p under H(t).

ot This 1s a matrix equation.
FH s It specifies the time
. dependence of each
time 1 nt of p. Usually has
dependent eleme P- y

the form of many coupled
first-order differential

Summarize .
= equations.

(A)=Tr(pA)=Tr(Ap)

info about quantity
being measured

< —[n,p]
tlme 1\ 1‘ m

evolution

info about state on which
measurement is to be made

initial state : p
each expressed independently in
the form of matrices which can be

observable quantity : A easily read (or designed!).

time evolution of p: H

NMR pulse gymnastics

statistical mixture states - use the same machinery BUT add the
independent p, matrices with weights p, that correspond to their
fractional populations [populations have no phase].

p is Hermitian so it can be diagonalized by Tt p T = p. However, if p
1s time-dependent, T would have to be time-dependent. This
transformation gives a representation without any coherences in p,
even if we started with a coherent superposition state. No problem,
because this transformation will undiagonalize H, thereby
reintroducing time dependences.
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