5.73 Lecture #18 18 - 1

Variational Method
(See CTDL 1148-1155, [Variational Method]
252-263, 295-307[Density Matrices])

Last time:
Quasi-Degeneracy — Diagonalize a part of infinite H
* sub-matrix : HO + H®
* corrections for effects of out-of-block elements: H®

(the Van Vleck transformation)
*diagonalize Hef=H©® + H® + H®

coupled H-O’ s example: the 2 : 1 (0,=2®,) Fermi resonance polyads

1. Perturbation Theory vs. Variational Method: non-orthognal — S (overlap
matrix)

Variational Theorem

Stupid nonlinear variation

Linear Variation —» new kind of secular Equation

Linear combined with nonlinear variation

Strategies for criteria of goodness — various kinds of variational
calculations

o oUW

1. Perturbation Theory vs. Variational Method

Perturbation Theory effectively uses co basis set

non-degenerate: diagonalize Heff

quasi-degenerate: non-diagonal Heff (model with quantum number scaling)
goals: parametrically parsimonious fit model, Heff

fit parameters (molecular constants) <> parameters that define V(x)

M ) ..
nk — errors smaller than this “mixing

EV—EY < angle” times the previous order non—
zero correction term

(n 1s in-block, k is out-of block) because diagonalization is to

oo order (within block).

order-sorting

Variational Method

best possible estimate for lowest few E_, v, (and properties derivable from
these) using a finite (often huge) basis set and the exact form of H.
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Vast majority of computer time in Chemistry is spent in variational calculations
Goal is numbers. Insight is secondary.
“Ab Initio” vs. “semi-empirical” or “fitting”

[intentionally bad basis set: Hiickel, tight binding —
qualitative behavior obtained by a fit to a few microscopic—like
control parameters]

2. Variational Theorem

not necgssarily any observable
normalized N
If ¢ 1s approximation to eigenfunction of A

that belongs to the lowest eigenvalue, a , then

(0lA0)
(oloy

PROOF: eigenbasis (which we do not know — but know that it must exist)

Aln)=a,|n)

expand |d) in eigenbasis of A, exploiting completeness

)= 2In)

the Variational Theorem

(04

(1Al - 2<|>@n|¢ )= ol

eigenbasis for A

(0ldy="D (0 Z| (oln)|

n

(olal) 2l

n

Glo) — Sfilo)
subtract a, from both sides

Z(an - a0)|<n|(1)>’2

0= =" Z|<n'|q)>|2 =0 again, all terms in

. both sums are >0
because Y'|(n]o)" = > |(n']0)

o

all terms 1n both sums are >0
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We are done because, by definition of a,, a, > a, for all n and all terms in sum are .. > 0.
) S but useless because we do
.o = ag. QED .
not know a, or (n|¢) in advance
It is possible to perform a variational calculation for any A, not limited to H.

3. Stupid Nonlinear Variation
Use the wrong functional form or the wrong variational criterion to get poor
results — illustrates that the variational function must have sufficient
flexibility and the variational criterion must be as it is specified in the
variational theorem, as opposed to a clever shortcut.

The H atom Schrodinger Equation (¢ = 0)
110 ,0 1

=————7

2 r? or g r
] | L 1
T \Y

v, (r)=(r|ls)=n""e"
E =-1/2au [1au=219475cm™ |

and we know

normalized

but try (r|g)=[&/2n]" (&r)e ™ for all &

& is a scale factor that controls overall size of ¢ (r)

[actually this is the form of ¥, (r)] which at ¢ =1 is necessarily orthogonal to ¥, !
STUPID!

(¢(0)=o but \pls(O)zn_l/z)

€= M = ﬂ 62_—35 skipped a lot
<¢ | ¢> 3 8 of algebra

minimize €: @=0 E..=3/2—¢ . =-3/8au

dg

1
FAILURE! [c.f. the true values: E, . =-1/2au,E, = ——au}

[insufficiently flexible variational function.
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5.73 Lecture #18 8-4

Try something clever (but lazy):
What is the value of & that maximizes (¢|1s)?

|exact result (usually not known)|

for the best variational §=3/2,C, = <¢(é’; = 3/2)| 15> =0.9775
but if instead we maximize C,_ wrt.&:£=5/3—C, =0.9826 Is this better?

No. The value of € = —0.370 results from maximizing C, , which is a

poorer bound to £ than obtained by minimizing .
§=3/2—> ¢ =-0.375

1s

* need flexibility in ¢
s de : . -
* can't improve on d_ﬁ =0 by employing an alternative variational strategy

This was stupid anyway because we would never use the
variational method when we already know the answer!

4. Linear Variation — Secular Equation

N KEY
TOPIC
0= ZC"X” for this
"= lecture
< X H| )(n> =H o’ [distributed Gaussians |
overlap integrals
< X, Zn,> = Snn, (non-orthogonal basis sets are often convenient)

also not necessarily normalized

H .
<¢|H|¢> _ Ecncn nn
<¢ | ¢> Z} Cmcm'Smm'

82 cc.S = ZC c. H take i for each j and require that

Rearrange this equation.

To find the minimum value of €,

m’™~ mm n’ % nn’ C

o€

—— =0 foreach ) [|inear variation!

dc.

J

We are seeking to minimize ¢ with respect to each c;. Find the
global minimum of the e(cy,c,,...,cy) hypersurface.

The only terms in the sums that survive — are those that include ¢

C.
J
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8% o (S’"f " Sf’”) - zn“c" (Hf” tH, ) These are all of the surviving terms

. 1.e. those that include j). Each j term
f | S.=S.H,=H, (Le Jat

! {X“} are red v 4 appears twice in both sums, once as a
0= icn (Hjn _ SSM) bra and once as a ket.

n=1

We get one such equation for each j (same set of unknown {c,}).

N linear homogeneous equations in N unknown ¢, s

Non trivial {c,} only if |[H— ¢S| =0

(Not the same simple form as |H — 1E| =0, but we can deal with this extra
computational complexity.)

The result is N special values of ¢ that satisfy this equation.

CTDL show: all N e-values are upper bounds to the lowest-N E, " s

and all obtained { ¢ .}’ s are othogonal! (orthogonal provided
that they belong to
different values of E,)
How to solve |[H- £¢S| =0:
series of transformations on both S and H
1. Diagonalize S

UTSU: é Sl] ZSZ'SZ']'

(orthogonalize { y } basis)

2. Normalize S

-1/2

N-1/2 ~ ~ z S 0 0

(S) 789" =1=8=T'ST 12\t &1 : -1/2
product of where T = US_I/Q (S ) =S = 0 Sy 0
3 diagonal .
matrices 0 0

This is not an orthogonal transformation of S, but it does not destroy
orthogonality because each eigenfunction of S is only being
multiplied by a constant.
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3. Transform H to orthonormalized basis set

ﬁ e (UTHU) S 12 U diagonalizes S
I—TI T not H
T

Obtain a new secular equation:

ﬁ-eé‘zo but S=1

thus

H- 81‘ —0 by which H is diagonalized by the usual procedure

5. Combine Linear and Nonlinear Variation

typically done in ab initio electronic structure calculations

Basis set: linear variation in {y,}, but where ¢, is a radial
% (8ar)
scale factor, one for each y,

\l! = chXn (%nr)
n nonlinear variation

get Snn’ (&n ’an' ) ’Hnn' (&n ’&n')
0. pick arbitrary set of {il}

1. calculate all Hij(ai,aj) and Sij(ii,ﬁj)
2. Solve ‘H-SS‘ =0

a. S — S diagonalize S (orthogonalize)
~\—1/2 .

b. (S) (normalize)

c. H— I-:I

d. diagonalize H

and now the nonlinear variation begins — find global
minimum of g ... With respect to ¢;.
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3. change & from & — EP =EP + 68
4. recalculate all integrals in H and S involving y,
5. Solve |H-£S|= 0 to obtain a new set of {g,}.
Pick lowest &g,.

ag gold _ 8new

6‘ Calculate lowest __ “lowest lowest
©0) _ £
aél 1 %1

7. repeat #3 — 6 for each &, (always looking only at lowest ¢ ;)
This defines a gradient on a multidimensional lowest-(&;,...Ey) surface.
We seek the minimum of this hypersurface. Take a step in direction of
steepest descent by an amount determined by |0 & /08 cepes: | (small
slope, small step; large slope, large step).

This completes 1st iteration. All values of {£ }are improved.

8. Return to #3, iterate #3-7 until convergence is obtained.

Nonlinear variations are much slower than linear variations.

Typically use ENORMOUS LINEAR {y } basis set.

Contract this basis set by optimizing the nonlinear parameters (exponential scale
factors) in a SMALL BASIS SET to match the lowest { ¢ }’ s that had
initially been expressed in large basis set. Least squares fitting of
wavefunctions.

Large linear variation to get the linear combination of ¢’s that have the lowest
energies;
define a set of functions {y;(é;x)} that contain non-linear scale parameters;

perform a least squares fit of the {{} to match the lowest few energy states from
the linear variation;

ortho-normalize the small set of ¥;(¢;x) functions and use them in a linear
variation, thereby replacing the many-component functions from the massive
linear variation by few-component functions (contracted basis set) from the
hybrid linear variation.
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6. Alternative Strategies

* rigorous variational minimization of E, . ..: “ab initio”

* constrain variational functions to be orthogonal to specific subset of variationally
optimized functions

e.g. orthogonal to ground state — to get variational convergence.
Applied to higher energy members of specific symmetry class
or orthogonal to core: frozen-core approximation.

“Pseudopotentials” (use some observed energy levels to
determine Z*f(r) of frozen core)

* least squares fitting to truncated H i.e. Heff

minimize differences between a set of measured energy levels (or other
properties) and a set of computed variational eigen-energies (or other
properties computed from variational wavefunctions).

{observed E"} — {parameters in Heff}

molecular constants
U
experimental ¥’s in finite
variational basis set

* semi-empirical model

replace exact H by a grossly simplified form and restrict basis set to a simple
form too. Then adjust parameters in H to match some observed pattern of
energy splittings. Confirm by using parameters to predict unobserved
properties. Use values of fit parameters to build insight.

Never-ending battle between accuracy
and 1nsight!
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