
 
 

 

  
  

 
 

 
     

 

   
 

 
 
  
 
  

 
 

 
  

 
  

 

 

 
 

5.73 Lecture #18 18 - 1 

Variational Method 
(See CTDL 1148-1155, [Variational Method] 

252-263, 295-307[Density Matrices]) 

Last time: 
Quasi-Degeneracy → Diagonalize a part of infinite H 

* sub-matrix : H(0) + H(1) 

* corrections for effects of out-of-block elements: H(2) 

(the Van Vleck transformation) 
*diagonalize Heff =H(0) + H(1) + H(2) 

coupled H-O’s example: the 2 : 1 (ω1≈2ω2) Fermi resonance polyads 

1. Perturbation Theory vs. Variational Method: non-orthognal ➝ S (overlap 
matrix) 

2. Variational Theorem 
3. Stupid nonlinear variation 
4. Linear Variation → new kind of secular Equation 
5. Linear combined with nonlinear variation 
6. Strategies for criteria of goodness — various kinds of variational 

calculations 

1. Perturbation Theory vs. Variational Method 

Perturbation Theory effectively uses ∞ basis set 
non-degenerate: diagonalize Heff 

quasi-degenerate: non-diagonal Heff (model with quantum number scaling) 
goals: parametrically parsimonious fit model, Heff 

fit parameters (molecular constants) ↔ parameters that define V(x) 

Hnk
(1) 

— errors smaller than this “mixingorder-sorting (0) − Ek
(0) < 1

En angle” times the previous order non– 
zero correction term 

(n is in-block, k is out-of block) because diagonalization is to 
∞ order (within block). 

Variational Method 

best possible estimate for lowest few En, ψn (and properties derivable from 
these) using a finite (often huge) basis set and the exact form of H. 
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5.73 Lecture #18 18 - 2 
Vast majority of computer time in Chemistry is spent in variational calculations 
Goal is numbers. Insight is secondary. 
“Ab Initio” vs. “semi-empirical” or “fitting” 

[intentionally bad basis set: Hückel, tight binding – 
qualitative behavior obtained by a fit to a few microscopic–like 
control parameters] 

2. Variational Theorem 

not necessarily any observable
normalized 

If φ is approximation to eigenfunction of Â 

that belongs to the lowest eigenvalue, a , then 
0 

φ A φ 
the Variational Theorem α ≡ ≥ a0φ φ 

PROOF: eigenbasis (which we do not know – but know that it must exist) 

n n= anA 
expand ∣φ〉 in eigenbasis of A, exploiting completeness 

φ = ∑ n n φ 
n completeness 

2φ A φ = ∑ φ n n A φ = ∑ φ nn′ n′ an 
n,n′ an δnn′& n 

eigenbasis for A 

2φ φ = ∑ φ n n φ = ∑ φ n 
n n 

2 n φ∑anφ A φ
α ≡ = n 

2 all terms in both sums are ≥ 0φ φ φn′∑ 
n′ 

subtract a0 from both sides 
2 n φ∑(an − a0 ) 

nα − a0 = 2 ≥ 0 
n′ again, all terms inφ∑ 

n′ both sums are ≥ 0 
2 = ∑ 

2because ∑ n φ φn′ 
n n′ 
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5.73 Lecture #18 18 - 3 
We are done because, by definition of a0, an ≥ a0 for all n and all terms in sum are ∴ ≥ 0. 

⎛ but useless because we do ⎞∴ α ≥ a0. QED ⎜ not know an or n φ in advance⎠⎟⎝ 
It is possible to perform a variational calculation for any A, not limited to H. 

3. Stupid Nonlinear Variation 
Use the wrong functional form or the wrong variational criterion to get poor 
results — illustrates that the variational function must have sufficient 
flexibility and the variational criterion must be as it is specified in the 
variational theorem, as opposed to a clever shortcut. 

The H atom Schrödinger Equation (ℓ = 0) 

1 1 ∂ ∂ 1H = − r2 −
2 r2 ∂r ∂r r 

T V 

= π−1/2e−r⎧ψ 1s (r) = r 1s⎪and we know ⎨ 
⎪E1s = −1/ 2 au ⎡⎣1 au = 219475 cm−1 ⎤⎦⎩ 

1/2 normalized
but try r φ = ⎡⎣ξ

3 2π⎤⎦ (ξr)e−ξr for all ξ 

ξ is a scale factor that controls overall size of φ(r) 

[actually this is the form of ψ2p(r)] which at � = 1 is necessarily orthogonal to �1s!
 STUPID! 

(0) = π −1/ 2 (φ(0) = 0 but ψ 1s ) 

φ H φ 4 ⎛ ξ 2 − 3ξ ⎞ skipped a lotε = = 
⎝⎜ ⎠⎟ of algebraφ φ 3 8 

dεminimize ε: = 0 ξmin = 3 / 2 → εmin = −3 / 8 au 
dξ 

⎡ 1 ⎤ 
FAILURE! 

⎣⎢
c. f . the true values: E1s = −1/ 2 au, E2s = − 

8 
au 

⎦⎥ 
[insufficiently flexible variational function. 
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5.73 Lecture #18 18 - 4
exact result (usually not known)

Try something clever (but lazy): 
What is the value of ξ that maximizes 〈�|1s〉? 

for the best variational	 ξ = 3/2,C1s ≡ φ(ξ = 3/2) 1s = 0.9775 

but if instead we maximize C1s wrt . ξ :ξ = 5/3→ C1s = 0.9826 Is this better? 

No. The value ofε= –0.370 results from maximizing C1s, which is a 
poorer bound to � than obtained by minimizing �. 
� = 3/2 → ε = –0.375 

* need flexibility in φ 

dε* can't improve on = 0 by employing an alternative variational	 strategy dξ 

This was stupid anyway because we would never use the 
variational method when we already know the answer! 

4. Linear Variation → Secular Equation 

N 

φ = ∑cnχn 
n=1 

H χ = Hnχn n′ n′ 
overlap integrals

χ = Sn 
(non-orthogonal basis sets are often convenient) 

KEY 
TOPIC 
for this 
lecture

distributed Gaussians 

χn n′ n′ 
also not necessarily normalized 

∑cncn′ Hnn′φ H φ n,n′ = Rearrange this equation.ε = 
φ φ ∑ cmcm′Smm′ 

m,m′ To find the minimum value of ε, 
∂ 

ε∑ cmc Sm = ∑cncn′ Hn 
take for each j and require that 

m′ m′ n′ ∂c 
m,m′ n,n′ j 

∂ε = 0 for each j linear variation!∂cj 
We are seeking to minimize � with respect to each cj. Find the 
global minimum of the e(c1,c2,…,cN) hypersurface. 

The only terms in the sums that survive 
∂

 are those that include c j .∂c j 
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5.73 Lecture #18 18 - 5 
ε∑ 

m 

cm (Smj + Sjm ) = ∑ 
n 

cn (H jn + Hnj ) These are all of the surviving terms 
(i.e. those that include j). Each j termif {χn }  are real Sij = Sji , Hij = H ji appears twice in both sums, once as a

N 
bra and once as a ket.0 = ∑cn (H jn − εSjn )

n=1 

We get one such equation for each j (same set of unknown {cn}). 

N linear homogeneous equations in N unknown cn ’s 
Non trivial {cn} only if |H – εS| = 0 
(Not the same simple form as |H – 1E| = 0, but we can deal with this extra 
computational complexity.) 

The result is N special values of ε that satisfy this equation. 

CTDL show: all N ε-values are upper bounds to the lowest-N En ’s 
and all obtained {φn}’s are othogonal! (orthogonal provided 

that they belong to 
different values of En) 

How to solve |H – εS| = 0: 
series of transformations on both S and H 

1. Diagonalize S 
˜U†SU= S S̃ij = siδij 

(orthogonalize {χ} basis) 

Normalize S̃2. 

⎛ −1/2s1 0 0 ⎞−1/2 ! S)−1/2 !(S! ) S( ! = 1= S = T†ST †
S̃ −1/2 S̃−1/2 

S−1/2product of where T = U ! ( ) = 
3 diagonal 

⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟⎠ 

−1/20 s2 0 
! 

= 
0 0matrices 

unitary 
!This is not an orthogonal transformation of S, but it does not destroy
!orthogonality because each eigenfunction of S is only being 

multiplied by a constant. 

5
modified 8/13/20 8:25 AM 



 

    

 

 

 

	 

 

 

    
       

   

    

   

 

 

! ! !

! !

!

!

5.73 Lecture #18 18 - 6 
3. Transform H to orthonormalized basis set 

≈
H = S! −1/2 (U†HU)S! −1/2 U diagonalizes S 

not H 
T† T 

Obtain a new secular equation: 

H! - εS! = 0 but S! = 1 

!thus H - ε1 = 0 by which H! is diagonalized by the usual procedure 

5. Combine Linear and Nonlinear Variation 

typically done in ab initio electronic structure calculations 

r linear variation in {�n}, but where �n is a radialBasis set: χn (ξn ) scale factor, one for each �n 
ψ = ∑cnχn (ξnr ) 

n nonlinear variation 

get Sn (ξn ,ξ ),H n (ξn ,ξ )n′ n′ n′ n′ 

0. pick arbitrary set of { }ξ
i 

1. calculate all H (ξ ,ξ ) and S (ξ ,ξ )ij i j ij i j 

2. Solve H-εS = 0 

a. S → S! diagonalize S (orthogonalize) 

b. ( )S! −1/2 
(normalize) 

c. H → H! 

d. diagonalize H! 

and now the nonlinear variation begins — find global 
minimum of �lowest with respect to �i. 
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5.73 Lecture #18 18 - 7 
(0) → ξ1

(1) (0) + δ3. change ξ1 from ξ1 = ξ1 

4. recalculate all integrals in H and S involving χ1 

5. Solve H-εS = 0 to obtain a new set of {ε i }. 
Pick lowest ε i. 

old new ε lowest − ε lowest 6. calculate ∂ε lowest = (0) −ξ1
(1) ∂ξ1 ξ1 

7. repeat #3 – 6 for each ξi (always looking only at lowest εi) 
This defines a gradient on a multidimensional lowest-�(ξ1,…ξN) surface. 
We seek the minimum of this hypersurface. Take a step in direction of 
steepest descent by an amount determined by |∂ε/∂ξsteepest| (small 
slope, small step; large slope, large step). 

This completes 1st iteration. All values of {ξi}are improved. 

8. Return to #3, iterate #3-7 until convergence is obtained. 

Nonlinear variations are much slower than linear variations. 
Typically use ENORMOUS LINEAR {χ} basis set. 
Contract this basis set by optimizing the nonlinear parameters (exponential scale 

factors) in a SMALL BASIS SET to match the lowest {φ}’s that had 
initially been expressed in large basis set. Least squares fitting of 
wavefunctions. 

* Large linear variation to get the linear combination of !’s that have the lowest 
energies; 

* define a set of functions {#!(%!&)} that contain non-linear scale parameters; 

* perform a least squares fit of the {%} to match the lowest few energy states from 
the linear variation; 

* ortho-normalize the small set of #!(%!&) functions and use them in a linear 
variation, thereby replacing the many-component functions from the massive 
linear variation by few-component functions (contracted basis set) from the 
hybrid linear variation. 

7
modified 8/13/20 8:25 AM 



 

 
 

 

 

 

 
 

 

 

 

 

 
 

5.73 Lecture #18 18 - 8 
6. Alternative Strategies 

* rigorous variational minimization of Elowest: “ab initio” 
* constrain variational functions to be orthogonal to specific subset of variationally 

optimized functions 

e.g. orthogonal to ground state – to get variational convergence. 
Applied to higher energy members of specific symmetry class 

or orthogonal to core: frozen-core approximation. 
“Pseudopotentials” (use some observed energy levels to 
determine Zeff(r) of frozen core) 

* least squares fitting to truncated H i.e. Heff 

minimize differences between a set of measured energy levels (or other 
properties) and a set of computed variational eigen-energies (or other 
properties computed from variational wavefunctions). 

{observed En } ↔ {parameters in Heff } 
molecular constants 

⇓& 
experimental ψ’s in finite 

variational basis set 

* semi-empirical model 

replace exact Ĥ by a grossly simplified form and restrict basis set to a simple 
form too. Then adjust parameters in H to match some observed pattern of 
energy splittings.  Confirm by using parameters to predict unobserved 
properties. Use values of fit parameters to build insight. 

Never-ending battle between accuracy 
and insight! 
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