
 
 

 
   
  
    

  

 

 

 

 

 

5.73 Lecture #17 – Perturbation Theory IV 17 - 1 
Vibrations of Polyatomic Molecules 
H is ∞ dimension 
How do we arrange and “read” it? 
How do we truncate it? H⟶Heff 

Near Degeneracies – accidental or “intentional” 
molecular dynamics is uniquely sensitive to 
“resonances” 

unique sensitivity to inter- and intra-molecular interactions 
*IVR – Intramolecular Vibrational Redistribution 
*x-k relationships 
*Polyads
      Two frequently occurring polyad cases 2:1 and 2:2 resonances 
Van Vleck Transformation for inter-polyad interactions 
Isomerization 

Not just for small molecules in gas phase 

Mark Johnson for H-bonding in H2O clusters. 

molecule with N atoms: 3N-6 normal modes 

What is a Normal Mode? 
synchronized dance of all N atoms 
Classical Mechanics 

Wilson Decius and Cross “Molecular Vibrations” 

]1/2 
ω = [k µe 

QM 

µ is generalized 
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5.73 Lecture #17 – Perturbation Theory IV 17 - 2 
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎠ 

(1) H nmusually ≪ 1(0) − E (0) E n m 

but we will see 2 things: 

matrix elements of xk grow as constant ⊗ nk/2 and contribute to energy 
levels as nk–1 

density of states increases so some get very small 

We need to deal with anharmonic interactions, which become increasingly 
important E↑ 
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5.73 Lecture #17 – Perturbation Theory IV 17 - 3 
N-Atom Polyatomic Molecules 

[use BOLD CAPITAL letters to symbolize many vibrational modes] 

3N–6 normal modes 

What is a normal mode? 

3N −6 

V (Q)(0) 1 synchronized dance of 
all atoms= 2∑ kiQi 

i=1 2 
what happens if one

3N −6 dancer has a sprained
(0 ) ankle?E = ! ( +1/ 2){ } ∑ ω i nini

i=1 
everyone for themself! 
(i.e., “local modes”)

dµ
transitions µ(Q) = µ0 + QidQi!#" 

change of Qi causes change of µ 

CO2 is symmetric µ0 = 0 
x 

z 

y 

symmetric dµ
mode 1 = 0 ∆V = 0stretch dQ1 

dµ
mode 2 band (⊥) type ≠ 0 ∆n2 = ±1dQ2 

anti-symmetric dµ
mode 3 ≠ 0 ∆n3 = ±1stretch (||) type dQ3 
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5.73 Lecture #17 – Perturbation Theory IV 17 - 4 
Expect simple spectra, exclusively ∆n2 = 1 or ∆n3 = 1 

NOT BOTH ∆n2 = 1 and ∆n3 = 1 simultaneously 

Expect energy initially deposited in specific (n1, n2, n3)0 basis 
state to stay in that state. “Mode Specific Chemistry”: an 
unfulfilled dream 

Expectations are violated because of anharmonic interaction 
terms. 

V (1) (Q) = ∑ {cubic terms}+{quartic terms} 
i=1 

1 1 1 3cubic Q1
3 + Q2

3 + Q3k111 k222 k333 6 6 6 
1 1 12Q2 + 2Q3 +k112Q1 k113Q1 k123Q1 Q2 Q32 2 2 
1 4quartic etc. k1111Q124 

Each of these terms has explicitly known quantum number 
dependent selection rules and magnitude scaling rules. 

Seems like a nightmare! But actually it is quite the opposite. 

Most of the anharmonic terms connect basis states that are 
energetically remote from each other.  These interactions can be 
dealt with by 2nd order Perturbation Theory. 

A few interaction terms connect near degenerate basis states.  
These dominate the dynamics and give rise to “polyads” 

• must be diagonalized 
• can lead to local modes broken picture of level 

splittings and• can enable 
transition intensitiesisomerization 
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5.73 Lecture #17 – Perturbation Theory IV 17 - 5 

Let’s look at a simple example that illustrates all of the steps. 

There are two special cases. 

Fermi Resonance ω1 ≈ 2ω2 2:1 

Darling-Dennison 2ω1 ≈ 2ω3 2:2 

Symmetric stretch and anti-symmetric stretch usually have similar 
frequency, but one is symmetric and the other is anti-symmetric. 

Q1 ⊗ Q1 is symmetric 

Q3 is anti-symmetric 

Q3 ⊗ Q3 is symmetric 

⟶[these 2:2 anharmonic terms lead to “local stretchers”] 

wave my arms 

Fermi Resonance involves a cubic anharmonic term. 

Q1Q3
2k133 

put this into a,a†  form 

⎛ ! ⎞
1/2 

†Q1 = (a1 + a1 )⎝⎜ 2m1ω1 ⎠⎟ 

⎛ ! ⎞
1/2 

†Q3 = (a3 + a3 )⎝⎜ 2m3ω3 ⎠⎟ 

Let m1 = m3 (this is a bit of a fraud because the mass factors are not quite so 
simple) 

3/2 
⎡ ! ⎤ −1/2 2 2 † †k133Q1 Q3 = 
⎣⎢ 2m ⎦⎥ 

⎡⎣ω1ω3 
⎤⎦ (a1 + a1 )(a3 + a3 )

2 
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(n1+1)1/2[(n3+2)(n3+1)]1/2

a1,a3
† (n1+1)1/2[n(n–1)]1/2

(n1+1)1/2[(2n3+1)]1/2

(n1)
1/2[(n3+2)(n3+1)]1/2

(n1)
1/2[n(n–1)]1/2

(n1)
1/2[2n3+1]1/2

5.73 Lecture #17 – Perturbation Theory IV 17 - 6 
Operator algebra:  intermode ⎡⎣a i ,a j ⎤⎦ = ⎡⎣a i ,a

† 
j 
⎤⎦ = 0 

† † †2 + 2N3(a1 + a1 )(a3 + a3 ) = a1 
⎡⎣a3

2 + a3 ( + 1)⎤⎦ 
† †2 + 2N3+a1 
⎡⎣a3

2 + a3 ( + 1)⎤⎦ 

H(1) 6 terms H ≡ n1 ′,n3 ′n1,n3n1,n3;n1 ′ ,n3 ′ 

∆ E = E
(1) n1,n3 

− En1 ′ ,n3 ′ operator n1 − n1 ′ n3 − n3 ′ H n1,n3;n1 ′ ,n3 ′ = ! ⎡⎣(n1 − n1 ′)ω1 + (n3 − n3 ′)ω3 
⎤⎦ 

2a1,a3 
–1 –2 (n1+1)1/2[(n3+2)(n3+1)1/2 ![–ω1–2ω3] 

†2 (n1+1)1/2[n(n–1)]1/2a ,a –1 +2 ![–ω1+2ω3]1 3 

(n1+1)1/2[(2n3+1)]1/2a1(2N3+1) –1 0 ![–ω1] 
† 2 (n1)1/2[(n3+2)(n3+1)]1/2a1 ,a3 

+1 –2 ![ω1–2ω3] 
† †2 (n1)1/2[n(n–1)]1/2a1 ,a3 

+1 +2 ![ω1+2ω3] 
† (n1)1/2[2n3+1]1/2a1 (2N3 +1) +1 0 ![ω1] 

The two circled terms involve near degeneracy. 

They require diagonalization of a near-degenerate block. 

All of the other terms can be dealt with by 2nd order non-degenerate 
Perturbation Theory. 
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5.73 Lecture #17 – Perturbation Theory IV 17 - 7 
OK, we are interested in all of the terms where ω

1
– 2ω

3 
≈ 0. 

P = 2n1 + n2 
↓ ↓ 

2 points 1 point 
Polyad # total membership of states for ω1 = 2ω for ω3 = ω 

P = 0 (0, 0) 1 
P = 1 (0, 1) 1 
P = 2 (1, 0), (0, 2) 2 
P = 3 (1, 1), (0, 3) 2 
P = 4 (2, 0), (1, 2), (0, 4) 3 
P = 5 (2, 1), (1, 3), (0, 5) 3 
P = 6 (3, 0), (2, 2), (1, 4), (0, 6) 4 

We have degenerate groups of levels where all within-group matrix 
elements scale larger with n1, n3 and within-group membership 
increases. Worse and worse!!!!! Or is it? 

This amounts to increasingly strong interactions among larger groups 
of states. But it is consistent with a mode. NOT ERGODIC!!! 

This is a dominant feature of both spectrum and dynamics. 

k133 can either make the bend softer or stiffer as the stretch increases. 

We can rewrite everything so far in terms of P. 
(0) E p 

!ω 
= 2(n1 +1/ 2) + (n3 + 1/ 2) 
= 2n1 + n3 + 3/ 2 = P + 3/ 2 

⎛ P ⎞ ⎛ P ⎞ 
even-P:  states are ⎝⎜ n1 = ,n3 = 0⎠⎟ ,⎝⎜ n1 = − 1,n3 = 2⎠⎟ ,…(0, P)

2 2 
P + 2

there are  states in polyad 
2 
⎛ P −1 ⎞ ⎛ P − 3 ⎞

odd-P:  states are ⎝⎜ n1 = − 1,n3 = 1⎠⎟ ,⎝⎜ n1 = ,n3 = 3⎠⎟ ,…(0, P)
2 2 

P +1
there are  states in polyad 

2 
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5.73 Lecture #17 – Perturbation Theory IV 17 - 8 

⎛ ⎞ †2 + a1
† 2 † †2 † 

!3/2 −3/2ω1 
− 

H 
1/2 

(1) 

ω3 2−3/2 ⎠⎟ 
= a1a3 a3 + a1a3

2 + a1a3 a1 ( N2 + 1) + a( N2 + 1)
⎝⎜ m "$$$$$$# "$$$$$$# "$$$$$$$$$$$$$#−1k122 ∆P = 0 –4 –4 –2 –2 

between polyads 

This is a recipe for adding interpolyad interactions via 2nd order Perturbation 
Theory. 

The 133 Polyad itself: 

⎛ 
⎜
⎜ 
⎜
⎜⎝ 

P + 3 / 2 0 0 0 
0 P + 3 / 2 0 0 
0 0 " 0 
0 0 0 P + 3 / 2 

⎞ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

(0) H
P = 
!ω 

(1) H
P 

stuff 
= 

P 
,0 

2 
P −1,2 
2 

P − 2,4 
2 

… 0,P 

even P P 
,0 

2 
0 

⎡⎛ ⎤P ⎞ 
⎢ 

⎠⎟ 
(2 −1) ⎥

⎝⎜ 2⎢ ⎥⎣ ⎦ 

P −1,2 
2 

sym 0 

1/2 
⎡⎛ ⎤P ⎞ 
⎢ −1 

⎠⎟ 
(3 ⋅ 4) ⎥

⎝⎜ 2⎢ ⎥⎣ ⎦ 
P − 2,4 
2 

sym 0 

! 
1/2 

⎡⎣(1)(P )(P −1) ⎤⎦ 
0,P sym 0 

8
revised 8/13/20 1:13 PM 



 

   

   

   

   

  

   
      

    

5.73 Lecture #17 – Perturbation Theory IV 17 - 9 
Inter-Block Interactions 

⎛ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎝ 

P1 P1 ~ P2 

! 

P2 

⎞ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎠ 

Van Vleck Transformation [HLB-RWF, pages 237-243] 

Second-Order corrections along diagonal 

H(1)2 
(0) + ij E
1 (0) − E (0) E

i 1 

Off diagonal 
(1)H(1) H(1) + aα αbH

ab ∑ (0) + E (0) 
α E 

a b (0) − E 
2 α 

Intramolecular Vibrational Redistribution (IVR) 

(0) The Pluck: Ψ(Q,0) = φ
{ V } 

φ(0) expressed as a sum of a ψ
{ V } { V } { V } 

−iE t/!{ V }Ψ (Q,t) = ∑a e
{ V } 

{ V } 

2 
”Survival Probability”: P = ∫ Ψ*(Q,0)* Ψ(Q,t)dQ 
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5.73 Lecture #17 – Perturbation Theory IV 17 - 10 

1 

irrev. 
decay small and random (in time and 

amplitude) recurrences 

0 

how fast? 
minor recurrences? 

“x-k” relationships 

E = ! ω n +1 / 2 − x n +1 / 2 n +1 / 2 
{v } ∑ i ( i ) ∑ ij ( i )( j )

{v } {v },{v1 } 

x ,k ,k{ } ↔ k
ij iij iiij iiiij 

from Perturbation Theory 

Polyads – a model of what is supposed to happen far above where 
normal modes are well known to be a bad approximation. 

a “broken pattern” that 
extrapolates well a “pattern of broken patterns” 

But at high E, some normal modes are replaced by local modes. 

a frequent path to isomerization 

trans-cis in S1 acetylene [Science 350, 1338 (2015)] 
acetylene-vinylidene in S0 acetylene [Science 358, 336 (2017)] 
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