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Last time:

Perturbation Theory II
(See CTDL 1095-1104, 1110-1119)
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Today:
1. cubic anharmonic perturbation

x3 vs. a,a’ matrix elements
ax? contributions to mx and Y,

nonlecture Morse oscillator <> pert. theory for ax?®

transition probabilities — orders and convergence of
perturbation theory
Mechanical and electronic anharmonicities.
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2
1
Example 1. H= ;)— + Ekx2 +ax’
m L
_ HO
HO

(a<0)

unphysical behavior

[G+1)G+2)i+3)]" >

Need matrix elements of x?

one (longer) way xi, = injx ke
Jk

matrix multiplication

4 different selection rules: ¢/ —:1=3, 1, -1, -3

(—1=3 i1—i+1,i+1—>i+2,i+2—>i+3 onepathfor/—i=3
[G+1)(@+2)(+3)] 2
(—1=1 i—i+1,i+1—>i+2,i+2—>i+1 threepathsfor/—i=1

i1—i-1,i1—-1—>i,i—>i+1
i1—i+1l,i+1—>i,1—i+1
There are three 3-step paths from i toi + 1. Add them.

[+ 1)(i+2)(i+2)]" +[() )+ )] + [+ D)+ 1) +1)]”

algebraically complicated (but only apparently!)

an other (much shorter) alternative method: using a, af, and afa
[operator algebra rather than ordinary algebra]

3/2 3/2
(re) ¥-lw)
m m
h 3/2 3
= (%) (a + aT)

(a + zf)3 =a’+ [a*aa +aa'a+aaa’ :| + [aa*aT +a'aa’ + a*a*a] +a’

four additive terms, four different selection rules.
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Use simple a,at algebra to work out all matrix elements and selection
rules by inspection.

recall: aT|n>=(n+1)l/2|n+1>, aln)=n""|n-1), a'a|n)=n|n)

prescription for permuting

a =1
I:a ? :I zlaT — 1 + aTa a through af

An=-3 a’

172
n-3.n = I:(n - 2)(” - 1)(”’)]
An=+3 a? =[(n+3)(n+2)(n+1)]"
An=-1 |a' ! f
" [a aavaaatraaa ]"*L" goal is to rearrange each product so that it
has the number operator at the far right

i = [af +
a*aa = aaTa —a a'aa l[a ,la],a + aa'a
aaa’ =aa'a+a

aa'a=aa’'a

3aaTa +(0 3 operators combined into only one!

An=-1 [ ] . = 3(aa+a)n_ =(n—1]3a(a'a)|n)=3n"

1,n

An=+1 [aa"'aT +a'aa’ + a"'a*'a] simplify as below

aa'a’'=a'aa’+a' =a'a'a+2a’

aaa’'=a'a'a+a’

a'a'a—a'a'a

3a'a’a+3a’

3/2

3<n+1|(a*a"a+a*)|n>= 3(n(n+1)1/2 +(n +1)l/2) = 3[(74 +1)(n+1)”2] =3(n+1)

All done — not necessary to massage the algebra as would have been

necessary for x? by direct x multiplication!
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Now do the perturbation theory:

E =E”+E"+E? :hw(n+1/2)+0+2k’

,(10) E]EO)
x3n=0
‘ Ol E© _ g©
nk n k
h 3
k=n-3 a° 2— (n—2)(n—1)(n) +3hm
m@®
h 3
k=n-1 a’ . 9n’ +170
ma@
h 3
3
k=n+l @ | 9(n+1) ~1ho
m@®
h 3
k=n+3 a° 2— (n+3)(n+2)(n+l) =370
ma@
of Y
E® _ ‘ (%J {(ﬂ-Z)(n -1)(n) (n+3)(n+2)(n+1) + o’ 9(n+1)’°
" ho 3 3 1 1
all Oi; thf 2 nearly-cancelling pairs

Simplest path is to combine the pairs of An = 3 and -3, An = 1 and —1 terms

232
E® = 8“ n [-30(n+1/2)" =335 algebra
ma
232
E® = —%l:?(n +1/ 2)2 + %} (m3a)4 = mkz)

all levels are shifted down, regardless of sign of a. Can’ t measure
the sign of the cubic anharmonicity constant, a, from vibrational
structure alone!

15( a*h 7( d*h
E” = hw(n+1/2)—h7(m](\/+l/2)2 —hg[mj
hweX, hY g
E, = h[YOO +(0€(v+1/2)—(Dexe(v+l/2)2 +(x)eye(v+l/2)3..}

ax® makes contributions exclusively to Y,, and o x,.
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NON-LECTURE

Relationship between Morse Oscillator and Perturbation Theory Treatment of Cubic

Plus Quartic Anharmonic Oscillator
Morse oscillator

VMorse

Cubic Plus Quartic Oscillator

Vi (x)= kx® + ax® + bx*

1
2

(x)=D, [1- e*"“‘]z (D, 1s the dissociation energy)

The exact energy levels of V... (obtained via WKB or DVR) have the simple form

E =n[(n+1/2)0—(n+1/2)*ax ].

First we determine the relationship between D,,a and w, wx for the Morse oscillator.

At the dissociation limit, n = np

aE _,
dn
dE
—=0=hw—-hox(2n.+1
dn (nD )
_ o 1
b2 2
E(nD):De
2
E(nD)zhm(%j—hm(%)
(,02
- 40
2
D =h2
¢ 4

This is neat because we have related two easily measured molecular

constants, w and wx, to one less easily measured molecular constant, D,.
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Now, in preparation for the perturbation theoretic comparison of Vy... to V3,
we compute the derivatives of V... at x = 0.

7(0)=0

2
ar =V'(x)= ho (206 — 20102 ]
dx 4o

As expected, V(x) is a minimum at x = 0,

V'(0)=0
sz ” h(l)z — O —20x
e =V"(x)= 4mx[—2aze +40’e” ]
2
V7(0)= ho 202 =k=mw’ (0>=k/m)
4ox
1/2
_ [2m(0x}
h

Thus we know both D, and « for V},,.. in terms of w and wx for an anharmonic
oscillator.

2
7o) =" ade ™ —gote 2|
4o
3hote’ 3 Ao’ [ 2mox |
V”(0)=-= =2
2 ox 2 o h
”nr hmz 4 —ox 4 2o0x
V7 (x)= 4mx[—20c e " +16a’e ]
2 29 2
70y =19 [1404] = 21 [—mwx}
4mx 2 ox h
2
_ 4@

h
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Now we look at the same set of derivatives for V; ,

(x)— kx2+ax + bx*

V7 (0)= k
V(0)=6a
V(0)=24b
()= F7(0)

Morse

2 1/2
—3( "“j 64
7

_2d’n
o'm’
V”I/ (0) V’”(O)

Morse

(o)’

14———=24b

Applying perturbation theory to V; ,(x), we saw on page 15-4 that

_15 a’h
4 mo*
but the algebraic approach to V.. led to
a’h

34
ma@

ox=2

15-7
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This difference is due to neglect of the first order contribution from the x*
term in the power series expansion of Vy; .. (x).

2 4
EV = V””(O)x4/4!:[7/2hw - }x4/24
wx

2
h
nlx*|n :(—j 4n+1/2)+2
(b} =| o | T4 +1/2)* +2]
EV=Lon(n+1/2) +—an
12 24
It turns out that input of the algebraic relationships between &, a, b for the
V; 4 potential and D,, a for Vy,, into perturbation theory gives correct results

if the ax? term is treated through second-order of perturbation theory but the
bx* term 1is treated only through first order of perturbation theory.

END OF NON-LECTURE
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One reason that the result from second-order perturbation theory applied
directly to V(x) = kx?/2 + ax? and the term-by-term comparison of the power
series expansion of the Morse oscillator are not identical is that contributions to
the (n + 1/2)? term have been neglected from higher derivatives of the Morse
potential in the energy level expression. In particular

2 4
E’(l”:V””(O)x4/4!=|:7/2h(0 o }x4/24
wx

nY 2
al .\ _
(n]x ‘n>_(2m(oj [4(n+1/2)"+2]
contributes in first order of perturbation theory to the (n + 1/2)? term in E,.

E" =lcox(n+l/2)2+l(ux
12 24

Example 2 Use perturbation theory to compute some property other than Energy.
To do this we need y, = wflo) + wf}) in order to calculate matrix elements of the operator in question.

For example, transition probability, x: for electric dipole transitions, the transition
probability is P, o

X

’,
nn

For H-O n—n=*1 only
Standard result. Now allow for both

h ; .
Xonel = (—j(n +1) “mechanical” and “electronic”
2mm ..
anharmonicity.
for perturbed H-O H® = ax3
(D
— 0 ’ k (0)
Vv, =V, peTT—

& E(O) — E© Vi
n k
ey M 1) €]

H
— (0) nn+3 (0) nn+l (0) nn—1 0) nn—3 (0)
g, =yl g0 g ) el () g 30
3ho " —he ™ Ao R T 70 M
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initial Wy gyt effect anharmonic (also contaminated via ax?)
state offect of of x final state
3 ) n+4
y® ax-ony, n+7|, n+5, n+4, n+3,n+1
%2 n+5, n+3, n+2,n+1, n-3
n+1 >< N+l 14 ne2,n+l, n, n-2
n
n n n+3, n+1, n, n-1, n-3
n—1{ n+2, n, n-1, n-2, n-4
n-2
n+1, n-1, n-2, n-3, n-5
n-4 n-1, n-3, n-4, n-5, | n-7

Many paths from initial to final state, which interfere constructively and

destructively in |

n=n+7,n+5.n+4,n+3,n+2,n+1l,n.n—-1,n—-2,n—-3.n—4,n—5n—7
1
only paths for H-O!

The transition strengths may be divided into 3 classes

1. direct: n—>n=+1
2. one anharmonicstep n—>n+4,n+2,n,n—2,n—4
3. 2 anharmonicsteps n—>n+7,n+5n+3,n+1,n-1,n-3,n-5n-"7

Work thru the An = -7 path

<n|x|n+7>:(Lj3/z+3/2+l/2 “—} (n+1)(n+2)(n+ 3)(n+4)(n+ 5)(n+6)(n+7)

- Xnn+3 Xn+3 Xn+d n+7
3
xn +3 ‘xn+3,n+4
x3+4,n+7
2 Wa'n’
Fuol < ST
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* you show that the single-step anharmonic terms go as

o< (2:1(0 j%ﬂ/z (_;;0)) [(n+ 1)(n+ 2)(11 + 3)(n+ 4)]1/2

2 .2 4
2 hican

%2446
32°mo

xnn+4

xnn+4

*  Direct term

‘ 2

x o
nn+1‘
2m (Dl

hn’a’®
Each higher order term gets smaller by a factor ( 2 o’ ]’
S . i mo
which is a very small dimensionless factor.
RAPID CONVERGENCE OF PERTURBATION THEORY!

What about Quartic perturbing term bx4?

Note that E” = <n‘bx4 ‘n> #0

and is directly sensitive to the sign of b!

It is very important to know whether perturbation theory can give us the
sign of a perturbation parameter.

. k. . . .
e aneven power of X in ax’ gives contribution to E}i” =H fnll) , which depends

on the sign of a.

. k. .
e an odd power of x in ax" gives a zero contribution to E'" and a non-zero

contribution proportional to a’ to E’iz), which does not depend on the sign of

a.

e across term, as we will see in B, = B, — o(v + 1/2), can give the sign of the
coefficient of an odd-k term in H". A bit of a surprise!
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