
 

 
  

 

    

   

 

    

 

   

  

    
	 

   

	    

		 

5.73 Lecture #13 13 - 1 
End of Matrix Solution of H-O, and Feel the Power of the a and a† Operators 

p2 11. starting from H = + kx2 and [x,p] = i!
2m 2 

m 
2. we showed pnm = 

i! 
xnm (Em − En ) 

xnm = 
! 
i
k 
pnm (Em − En ) 

⎧⎪
⎨ 

⎫⎪
⎬ 

xnm∴ xnn = 0, pnn = 0 and = 0 if En = Empnm⎪⎩ ⎪⎭ 
2 1 23. x = − pnm nmkm 

)1/2 
E − E = ±!ω ω = (k m m n 

∴ the only non-zero x and p elements are between states whose E’s differ by ±!ω# 

(i )4. combs of connected states, “block diagonalization” of H, x, p, x2, p2: En 
= !ωn+ εi 

constant offset 
5. lowest index must exist because lowest E must exist. Call this index 0 for block i 

!2 (km)−1/2 x01 = 
2 from arbitrary (but almost universally chosen) phase choice 
! (km)+1/2 x01 = +i(km)−1/2 p01 

2p01 = 
2 

!! 

Today 
22 in terms of 6. Recursion Relationship: xnn+1 xnn-1 

2 2general matrix elements ,xnn+1 pnn+1 

7. general x and p elements 

8. the only blocks of H correspond to εi = 
2
1 
!ω 

We are ready to derive a powerful, compact, and intuitive algebra: 

x, H and a (annihilation) and aDimensionless † (creation) operators. p, 
! 
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5.73 Lecture #13 13 - 2 
Partial repetition from Lecture #12 

phase ambiguity: we can specify absolute phase of x or p BUT NOT BOTH because that 
would affect the value of [x,p] 
BY CONVENTION: 

matrix elements of x are REAL 
p are IMAGINARY 

)−1/2 
try x01 = +i(km p01 and plug this into 

* * x01 p01 − p01x01 = i! 

2 = 
! (km)

−1/2 

get x01 2 

)
+1/2 2 = 

! (km p01 2 

⎡ 
⎢ 
⎢ 
⎢⎣ 

)−1/2 If we had chosen x01 = −i(km p01  we would have 

obtained 2 = − 
! 
2 
(km)1/2  which is impossible! x01 

⎤ 
⎥ 
⎥ 
⎥⎦ 

check for self-consistency of seemingly arbitrary phase 
*choices at every opportunity: * Hermiticity (A† = A, Aij = Aji )

2 

* ≥ 0 for any Aij 

2 
6. Recursion Relation for xii+1 

start again with general equation derived in part #3 of Lecture #12 
using the phase choice that worked 

xnn+1 = i(km)−1/2 pnn+1 

index increasing 
)−1/2 * * 

Hermiticity xn+1n = i(km pn+1n 

= −i(km)−1/2 pn+1nxn+1nc.c. of both sides 

index decreasing 

2
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5.73 Lecture #13 13 - 3 

)−1/2 
∴ x = ±i(km pnn±1 nn±1 

now the arbitrary part of the phase ambiguity in the relationship between x 
and p is eliminated 

Apply this to the general term in [x,p] ⇒ algebra 

NONLECTURE : from four terms in [x,p] = i!" 

− 
)1/2 (km 

i 
⎛ ⎞

* * xnn+1 pn+1n = xnn+1 pnn+1 = xnn+1 xnn+1⎜⎝ ⎟⎠ 
2 )1/2 = (+i(km )xnn+1 

)1/2 (km 

i 
xnn+1 

⎞ 
⎟⎠ 

⎛ 2 )1/2 * (+i(km )( ) = xnn+1− pnn+1xn+1n = − xnn+1⎜⎝ 

)1/2 ⎛ (km ⎞
* * xnn−1 pn−1n = xnn−1 pnn−1 = xnn−1 ⎜ + xnn−1 ⎟⎝ i ⎠ 

2 )1/2 = (−i(km )xnn−1 

)1/2 ⎛ (km ⎞ 2 )1/2 * (−i(km )− pnn−1xn−1n = −
⎝⎜ 
− 

i 
xnn−1 

⎠⎟ 
(xnn−1 ) = xnn−1 

)1/2 ⎡ 2 2 ⎤∴i! = 2i (km x − xnn+1 nn−1⎣⎢ ⎦⎥ 

!(km)−1/2 2 2 
x = + x recursionnn+1 nn−12 

relation
2 2 ! )−1/2 but = = (km x01 x10 2 

xnn+1 

2 = n +1( ) ! 
2 
km( )−1/2 

pnn+1 

2 = n +1( ) ! 
2 
km( )+1/2 

thus 

3

general 
result 
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5.73 Lecture #13 13 - 4 
7. Magnitudes and Phases for xnn±1 and pnn±1 

verify phase consistency and Hermiticity for x and p 

)−1/2 in #3 we derived xnn±1 = ±i (km pnn±1 

one self-consistent set is 

⎞⎛
⎡ 1/2 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢⎣ 

! 

)1/2 2(km 

⎟ 
⎟
⎠ 

)1/2 nn+1 = +(n +1 ⎜ 
⎜
⎝ 

= +xx n+1nmatrix elements 
of x real and 
positive 1/2 (km)1/2 ⎞⎛ = mω

⎜ 
⎜
⎝ 

! 

)1/2 2(km 
( )1/2 nn−1 = + n ⎟ 

⎟
⎠ 

= +xx nn−1 

AND 
⎛

⎡ 1/2 ⎞)1/2 !(km 

2 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢⎣ 

)1/2 matrix elements 
of p imaginary 
with sign flip for 
up vs. down 

nn+1 = −i (n +1 ⎜ 
⎜
⎝ 

⎟ 
⎟
⎠ 

= − pn+1np 

1/2 ⎛ ⎞)1/2 !(km 

2( )1/2 nn−1 = +i n ⎜ 
⎜
⎝ 

⎟ 
⎟
⎠ 

= − pn−1np 

Phase is a recurrent problem in matrix 
mechanics because we never look at 

This is the usual phase convention wavefunctions or evaluate integrals explicitly. 

8. Possible existence of noncommunicating blocks along diagonal of H, x, p 

1/2 
⎛ k ⎞

you show that H = (n +1/ 2)! δ nm nm⎝⎜ ⎠⎟m 

⎛ note that x2  and p2  have non-zero Δn= ± 2 elements but ⎞ 
⎜ 2 ⎟1 p⎜ kx2 +  has cancelling contributions in Δn= ± 2 locations⎟ ⎝ ⎠2 2m 

This result implies 

* all of the possibly independent blocks in x, p, H are 
identical 

* εi = (1/2)!ω for all i 
* degeneracy of all En? all are the same, but can’t prove 

that this universal degeneracy is 1. 

End of repetition from Lecture #12 
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5.73 Lecture #13 13 - 5 

Creation and Annihilation Operators (CTDL pages 488-508) 

* Dimensionless operators 
* simple operator algebra rather than complicated real algebra 
* matrices arranged according to “selection rules” 
* matrix elements calculated by extremely simple rules 
* automatic generation of any basis function by repeated operations on 

ωGet rid of system-specific factors and alsok, !µ, . 

x 

lowest (nodeless) basis state 

)1/2 ω = (k /m 

~ 

⎛ ! ⎞ 
⎝⎜ ⎠⎟ 

22x1/2 
⎛ ⎞ = mω mω≡x x
⎝⎜ ⎠⎟"!~ 

p
~ 

H~ 

22 = !mωregular p p
~ 

k x2 + 

dimensionless 

We choose these 
( )−1/2 

≡ "mω p
2p 

2 
!ω

2m ⎝ 
1 

2 

1 ⎛ ⎞2 2H = + px~ ~ 

1 ⎛ ! ⎞ 1 k ! ! !ωk ⎝⎜ ⎠⎟ = = 
ω2 

= 
2 mω 2 m ω 2 ω 2 
1 (!mω) = 

1
2 
!ω

2m 

=factors to make 
everything come 

1 1 ⎠⎛ ⎞2 2 p
~ 

H = +x ~ = ⎝ ⎠"ω 2out dimensionless. 

⎛ mω 1 ⎞
1/2 

1⎡x ~ ,p⎤
⎦⎥ 
= ⎡⎣x,p⎤⎦ = (i!) = i dimensionless 

⎣⎢ ~ ⎝⎜ ! !mω ⎠⎟ ! 
from results for x, p, H 

square root of 
= 2−1/2 )1/2 δmn+1 + n1/2δmn−1x~ mn ⎡(n +1 ⎤ larger quantum⎣ ⎦ 

number 
= 2−1/2 i )1/2 δmn+1 − n1/2δmn−1p ⎡(n +1 ⎤ 

~ mn ⎣ ⎦ 
note the negative sign

H~ mn = (n +1/ 2)δmn diagonal 

Kronecker – δ’s specify selection rules for all nonzero matrix elements 

Now define something new: use a, a† to clean things up 
even more! 

updated 8/13/20 8:23 AM 
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5.73 Lecture #13 13 - 6 

a = 2−1/2 ⎛
⎝ x + i p

~! 
⎞
⎠ 

= 2−1/2 a† ⎛
⎝ x − i p

~! 
⎞
⎠ 

x = 2−1/2 (a + a† )
! 
= 2−1/2 i a† − a( )p

~ 

Let’s examine the matrix elements of a and a† 

now plug in m,n matrix elements of x and p from previous page 

 
 

  

   

 

	

    
      

 

   

! ! 

⎡2−1/2 ⎤+ 2−1/2 i p a = x mn mn mn ⎣⎢ ! ~ ⎦⎥ 

⎡ 1 )1/2 1 )1/2 1 1 ⎤1/2δ 1/2δ= (n +1 δ − (n +1 δ + n + n⎢ mn+1 mn+1 mn−1 mn−1 ⎥2 2 2 2⎣ ⎦ 

x i p x i pgroup terms ~ ~ ~ ~ 
according to 
“selection rule” two terms cancel two terms add 

= n1/2δmn−1 

the first (left) index is one smaller than the secondamn (right) 
column 

= n1/2 m a namn = 

row n1/2|n – 1⟩ 

a is lowering or “annihilation” operatorsimilarly 
† † = (n +1)1/2 a = m a n mn 

† )1/2 δmn+1amn = (n +1 the first index is one larger than the second 
a† is a “creation” operator 

6
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5.73 Lecture #13 13 - 7 
columns 

⎟
⎟
⎟
⎟
⎟ 
⎠ 

0 1 2 3 4 
0 
0 
0 
0 

⎟ 

⎞ 
⎟
⎟
⎟
⎟
⎟ 

11/2 0 0 0 00 0 0 0 ⎛ ⎞0 ⎛ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎜⎝ 

11/ 2 21/20 0 0 0 

31/ 2 0 0 0 0 

41/2 0 0 0 0 

0 0 0 0 0 

0 0 01 

⎜ 

⎜
⎜
⎜
⎜
⎜ 

21/ 2 a† = 0 0 02 a = 
31/ 2 0 0 0rows 3 

41/ 2 0 0 0 0⎟⎠⎝4 
Square root of integers always Square root of integers
only one step below main always only one step 
diagonal. a, a† are obviously not above main diagonal. 
Hermitian! 

= 41/2 = 31/2 a† e.g.  3 a 4e.g.  3 2 
row 

           

 

 

 
 
 
 
  

 

 

 
 
 
 
  

 

 

 
 
 
 
  

 

 

 
 
 
 
  

     
 

 

 

 

 

 

  

 
 

 

  

   
  

a† raises column a lowers 

What is so great about a, a†? 
1/2 a n = n n −1 annihilates 1 quantum 

)1/2 †a n = (n +1 n +1 creates 1 quantum 
−1/2 n†n = ⎡⎣n!⎤⎦ (a ) 0 generate any state, n , from the lowest state, 0 

needed to normalize. Each application of a† gives the 
next larger integer. Do it n times on ∣0〉, get n! ∣n〉. 

More tricks: look at aa† and a†a 

is aa† Hermitian? [(AB)† = B†A†] definition of Hermitian 

†† †† † †(aa ) = a a = aa 

∴ aa† and a†a are Hermitian — to what “observable” quantity do they 
correspond? We will see that one of these is called the “number operator.” 
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5.73 Lecture #13 13 - 8 

⎜ ⎟
⎞
⎠ 

⎜ ⎟
⎞
⎠ 

⎛
⎝ 

⎛
⎝ 

1 1− i p − i x+ i p + i paa† x2 + p2x x x p= = 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

⎜ ⎟ ⎜ ⎟
⎞
⎠ 
⎞ 

⎛
⎝ 

⎞
⎠ 

⎛
⎝ 
⎛ 

2 2 

1 
2 

1 
2 

⎜ 
⎜
⎜⎝ 

x2 + p2 
~ 

− i[x 
~ 
,p 

~ !~ 
]⎟ ⎟
⎟⎠ 

+1x2 + p2 
~ 

= = 
~ 

i 

1 −1 

1∴H~ = 
2 (a

†a + aa† )    and   ⎡⎣a,a† ⎤⎦ = 

⎞
⎠ 

⎛
⎝ 

2 2similarly a† + p
~ 

a = x~2 
⎞ 
⎟ 
⎟
⎟⎠ 

1 
 simple form for H~ 

H = a†a +1/ 2 
~ 

H is the number operator + 1/2 
! 

H = !ω H = !ω(a†a +1/ 2)~ 

# of 
quanta 

†a a n = n n a†a is "number operator" 

⎡⎣aa
† n = (n +1) n ⎤⎦ not as useful 

What have we done? We have exposed all of the “symmetry” and universality of the 
H–O basis set. We can now trivially work out what the matrix for any xnpm operator 
looks like and organize it according to selection rules. 
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5.73 Lecture #13 13 - 9 
What about x3? 

3 ⎛ mω⎞ 
−3/2 

3 When you multiply this out, 
x = x~ preserve the order of a and a†

⎝⎜ ! ⎠⎟ 
factors. 

3 2−3/2 †x = ( )(a + a )3 

~ 

2−3/2 3 + † † † † † † † †3 

= ( )⎡a (a aa + aa a + aaa ) + (aa a† + a aa† + a a a) + a ⎤
⎣ ⎦ 

∆n = –3,  –1, +1, +3 (# of † minus 
# of non-†)

Simplify each group using commutation properties so 
that it has form 

a ⎡⎣a
†a⎤⎦ n or a† ⎡⎣a

†a⎤⎦ n 

⇓ ⇓ 

)1/2n1/2n n −1 (n +1 n n +1 

NONLECTURE: Simplify the ∆n = –1 terms. 

a†aa = aa†a –aa†a + a†aa = aa†a − a! #"##$ 
add and subtract the term 

[a † , a]a = –a needed to reverse order 

aaa† = aa†a –aa†a + aaa† = aa†a + a! #"##$ 
a[a,a†]=a 

⎡⎣a
†aa + aa†a + aaa† ⎤⎦ = 3aa†a try to put everthing into aa†a order 

NONLECTURE: Simplify the ∆n = +1 terms. 

aa†a† = a†aa†−a†aa† + aa†a† = a†aa† + a† 
!##"##$ 

† † †[a,a ]a = a 
† †a †a † †a †a†aa = a †a−a †a + a†aa = a †a + a!##"##$ 

a† [a,a† ]=a† 

[aa†a† + a†aa† + a†a†a] = 3a†a†a + 3a† 

9
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5.73 Lecture #13 13 - 10 
∆n = ±3 

a3 n = ⎡⎣n(n −1)(n − 2)⎤⎦
1/2 n − 3 

a†3 n = ⎡⎣(n +1)(n + 2)(n + 3)⎤⎦
1/2 n + 3 

∆n = ±1 

= 3(n3/2 ⎡⎣a
† aa + aa†a + aaa† ⎤⎦ n ) n −1 

⎡ )1/2 )1/2 ⎡⎣aa
†a† + a†aa† + a†a†a⎤⎦ n = 3 (n +1 n n +1 + (n +1 n +1 ⎤⎣ ⎦ 

)1/2 = 3(n +1 (n +1) n +1 

)3/2 = 3(n +1 n +1 

no need to do matrix multiplication. Just play with a, a† and the [a, a†] 
commutation rule and the a†a number operator 

“Second Quantization” 

same as |n+3〉〈n| 
3/2 

xmn = δmn+3 ((n +1)(n + 2)(n + 3)3 ⎛ ! ⎞ ⎡ )1/2 

⎝⎜ 2mω⎠⎟ ⎣ 

)3/2 |n+1〉〈n|+ δmn+1 3(n +1 

+ δmn−1 3n
3/2 |n〉〈n–1| 

)1/2 ⎤+ δmn−3 (n(n −1)(n − 2) simple! x3 is arranged into four⎦ 
separate terms, each with its 

|n〉〈n–3| own explicit selection rule. 
same as n n− 3 

V (x) = 
1 kx2 + ax3 + bx4* !#"#$2 anharmonic terms → perturbation theory 

2IR transition intensities ∝ n x n +1* 

* Survival and transfer probabilities of initially prepared pure 
harmonic oscillator non-eigenstate in an anharmonic potential. 

* Expectation values of any function of x and p. 
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5.73 Lecture #13 13 - 11 

Universality: all k,m (system-specific) constants are removed until we put 
them back in at the end of the calculation. 

2 ⎡ 2 ⎤2e.g., What is Δx = x − x
⎣⎢ ⎦⎥ 

2 ! ! ⎡ 1 † 2 ⎤ 
x = x = a + a~ ⎢ ( ) ⎥ pure numbers in [ ]mω mω 2⎣ ⎦ 

2 ⎤2 ! ⎡ † †Δx = (a + a )2 
− a + a 

⎦⎥
?

2mω ⎣⎢ 

11
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