
 

 

 

5.73 Lecture #1 1 - 1 
Lecture 1 (revised): Course Outline. Free Particle. Motion? 

Quantum Mechanics is cruel. We cannot look directly at either 
intramoleclar structure or dynamics. But, as chemists or physicists, we 
seek and build beautiful detailed pictures of structure, dynamics, and 
mechanism. 

How do we do this? How do we get what we want (more than mere 
description) from experiment or calculation? Reductionist. 

5.73: Quantum Mechanics for use, not admiration, history, or 
philosophical challenges. 

Insight and Intuition 

Confidence to make free-hand drawn pictures (cartoons) of � 
and level structure (matrix structure) and wavepacket 
motion. 

What are we allowed to know and how are we allowed to 
measure (or calculate) it? 

Tricks for evaluating integrals 
Tricks for reducing Quantum Mechanics to Classical 

Mechanics 
The Periodic Table re-emerges. 
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5.73 Lecture #1 1 - 2 
Course Outline 

increasingly complex, mostly time-independent problems 

1-Dimensional in ψ(x) picture (Schrödinger)* 

• spectrum {En } ↔ potential V( x) central problem in Physical 
Chemistry, until recently 

• femtochemistry: wavepackets exploring V(x), information about V(x) from 
timing experiments. 

I(t) V(x) How is a wavepacket encoded for xc, ∆x, pc, ∆p? (c = center) 
What to look for? 

control 

trick to evaluate integrals
• stationary phase 

where does stuff “happen” 

Confidence to draw cartoons of ψ(x), even for 
• problems that you have solved once but no 

longer remember the details. 

ψ(x) 

Free Particle 

EHIGHER 

ELOW 

Transmission through 
a Barrier 

x 

ψ(x) 

x Tunneling in a Well 

Particle in a Box 
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5.73 Lecture #1 1 - 3 
Semi-classical: WKB. Connection of � across E = V(x) turning point. Quantization 

condition, RKR [Wentzel, Kramers, Brillouin, and Rydberg, Klein, Rees] 
* Matrix Picture (Linear algebra) 

Ψ(x) replaced by a large collection of numbers called “matrix elements”• 

• * small distortions from exactly solved problemsMain tool: perturbation 
theory * f(quantum numbers) ⟷F(potential parameters) 

representation representation 
of spectrum of potential 

Vibration-Rotation Energy Levels: 
e.g. Dunhamℓ⎛ 1⎞ m Expansion

EvJ = ∑ Yℓm ⎝⎜ 
v + 

⎠⎟ ⎣⎡J (J +1)⎤⎦2ℓ,m 
R − Re The {an} determine the {Yℓm}.V( )ξ = ∑ anξ n ξ ≡ 

Energy levels determine the
n=0 Re potential energy curve. 

• Linear Algebra: “Diagonalization” ↔Eigenvalues and Eigenvectors 

• How to set up and “read” a matrix. 
• Density Matrices: specify general state of system (�) and operators (Op) that 

correspond to a specific type of measurement, “populations” and “coherences”. 

*Problems in Three Dimensions 

Specific Problem Universal Symmetry, exactly soluble 

•Central Forces: Radial x Angular factorization

• The Hydrogen Atom: eigenstates and perturbations 
• Rigid Rotor, J2, Jz, J± matrix elements and selection rules 
• Vector Model 
• Transformation between “coupled” and “uncoupled” basis sets 
• Scattering : quantum mechanics for processes that involve unbound states. 
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5.73 Lecture #1 1 - 4 
*Many Particle Systems 

• many-electron atoms 
• Slater determinants satisfy anti-symmetrization requirement for Fermions 
• matrix elements of Slater determinantal wavefunctions 
• orbitals→configurations→states (“terms”): L–S–J states 
• molecular constants for many-electron systems⟷orbital integrals 
[Periodicity “recovered”] 

* Many-Boson systems: anharmonically coupled vibrations 
Intramolecular Vibrational Redistribution (IVR) 

* Periodic Lattices: band structure of metals 

Some warm-up exercises 

Particle in a constant V(x) 

* standard Quantum Mechanics problem ~ warm up 

* practice with complex numbers 

* building of intuition – “encoding” of motion 

p2 
H = T + V = + V(x) Classical MechanicsHamiltonian 

2m 
! ∂ 

special QM prescription p̂x = 
i ∂x Why? Could have started with ⎡⎣ x̂, p̂ 

x ⎤⎦ = i! 

!2 ∂ 2 
Ĥ = −

∂x2
+ V(x) 

2m 

Schrödinger ( ˆ )H − E ψ = 0 
Equation 

Free particle in constant V(x) 

⎛ !2 d 2 ⎞ Schrödinger
− +V0 − E⎟ ψ = 0 Equation

⎝⎜ 2m dx2 ⎠ 

What kind of Ψsatisfies this differential equation? 
revised 8/13/20 8:19 AM 
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5.73 Lecture #1 1 - 5 

d 2ψ ⎡ ) 2m ⎤ = – ( E −V0 ⎥ψ 
dx2 ⎣⎢ !2 ⎦ k real if E ≥ V0 

call this k2 (classicallyk imaginary if E < V0 forbidden region) 
⎡ ⎤

Thus k = ( E −V0 ) 2m 
1/2 

general solution (more general than sin kx 
⎣⎢ !2 ⎦⎥ and cos kx) 

= Aeikx +Be−ikx ψ(x) 

Two cases: 

E > V0 Classicallly allowed 

⎡ ) 2m ⎤E < V0 Forbidden.  k ≡ iκ κ = (V0 − E 
⎦⎥

 real 
⎣⎢ !2 

General solutions: 

ψ(x) = Aeikx + Be− ikx E > V0 k  real 
oscillatory 

E < V0 ψ(x) = ceκx + De−κx κ  real 
exponential 

Neat! form of ψ(x) depends on sign of E – V0 
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5.73 Lecture #1 1 - 6 
Some refresher for complex numbers: 

Re(z) Im(z) 

z* = x – iyz = x + iy 2Re(z) = (z + z*) 
2iIm(z) = (z – z*) 

i2 = –1 

|z|2 = zz* = x2 + y2 real and positive 

e±ikx = cos kx ± i sin kx 

1 ikx + e− ikx cos kx = [e ]
2 
1 ikx − e− ikx sin kx = [e ]
2i 

What happens when we apply p̂  to eikx? 

ikx ! d ikx !keikx eigenfunctionp eˆ = = 
i dx

e 
of p̂ 

eigenvalue 
of p̂"k = p 

a number, not an operator 

p = +!k motion in + x direction 
p = −!k motion in − x direction 

OK, we have some connection to Classical Mechanical motion. We 
want to ask: how is motion encoded in Ψ(x)? 
* Intuition 
* Before we get to the TDSE Ĥ Ψ(x,t) = ih ∂Ψ (mostly in 5.74)

∂t 
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5.73 Lecture #1 1 - 7 

How is ψ(x) encoded for motion? 
My favorite word 
in Quantum Mechanics 

eikx is an eigenfunction of p̂ 
x . It is also a complex function of a real 

variable. 

k is called the “wave vector” (or wave number). Why is it called wave vector? 
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ψ * ψ =|A|2 +|B|2 +A * Be−2ikx

  ψ = Aeikx +Be−ikx

+AB * e2ikx

travels to left? 

travels to 
right? 

ψ is probability amplitude 
density 

probability distribution 

z = Re(z)+ i Im(z)

2Re(A* B) = A* B + AB *

2i Im(A* B) = A* B − AB *

e± iα = cosα ± isinα

simplify: 

advance x by one full oscillation cycle “wavelength” ≡ λ

!
k r

!
k points in direction of motion

eikx  is periodic x → x + λ
• in 3-D where ei ⋅!

• ei(kx+2π ) = eikx

• eik(x+λ ) ≡ eikx ∴ kλ = 2π k = 2π
λ

this sum had 
better be real! 

Why?  It is  

Re(A*B e–2ikx)! 

k is # of waves per 2𝜋 unit length 

Now go back to Ψ(x). 
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5.73 Lecture #1 1 - 8 

We know ∣Ψ∣2 is real because it has the form z + z*. 

Look at it in more detail. The cross-terms: 

A* B(cos2kx + isin2kx )+ AB *(cos2kx − isin2kx ) = 

( A* B + AB *)cos2kx +( A* B − AB *)isin2kx = 

2Re( A* B)cos2kx +2iIm( A* Bisin2kx ) = 
note i × i = –1

2Re( A* B)cos2kx −2Im( A* B)sin2kx. 

This is real for all x. It has x-regions of positive and negative value. 

2
ψ 

2 
=ψ *ψ = A + B 

2 
+ 2Re(A* B)cos2kx + 2Im(A* B)sin2kx 

constant wiggly – only if both 
(delocalized particle) A and B are nonzero 

standing wave, real, neither complex nor imaginary 

to right? 
If ∣A∣ > ∣B∣ wiggles encode net +x motion. What is fraction 

to left? 
A,B are determined by problem-specific boundary conditions. 

• Can’t directly see any motion in x unless we go to time-dependent Schrödinger 
Equation 

• Need superposition of +k and –k parts in Ψ(x) to get wiggles. 

Wiggles = superpositon of waves with different values of k

 = “localization” requires another kind of superposition (wave-packet) 

• Motion becomes really clear when we do two things: 

* time-dependent Ψ(x,t) 

* create localized states called wavepackets by superimposing several eikx with 
different |k|’s. 
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5.73 Lecture #1 1 - 9 

Now for the E < V0 case. 

does not have wiggles, no motion in classically±κx 
forbidden region.e 

E < V 

To convince yourself, go back to 

ψ(x) = Ceκx + De−κx 

2 2 2κx +ψ = C e D 
2 
e−2κx + CD * +C * D!#######" 

real and 
independent 

of x 

To really see motion, need to use time-dependent 
Schrödinger Equation. 

To see localization, need superposition of several eikx 

with different values of ∣k∣. 

NEXT LECTURE: CTDL, pages 21-24, 28-31 (motion, infinite box, 
δ-function potential, scattering off δ-function barrier ). 
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