MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.73 Quantum Mechanics I
Fall, 2018

Professor Robert W. Field

Problem Set #9

Reading: Angular Momentum Handouts
C-TDL, pages 999-1024, 1027-1034, 1035-1042

Spherical components of a vector operator

Vi =322V, £V |
VO = VZ

Scalar product of two vector operators

VeW =Y (1FV_ W, .
n

Scalar product of two tensor operators

TO[A1 Az ]= 3 (<11 T [A]T9)[A]
u

Problems:

1. CTDL, page 1086, #2.
2. CTDL, page 1089, #7.
3. CTDL, page 1089, #8.

4. A. d orbitals are often labeled xy, xz, yz, z2, x2—y2. These labels are Cartesian tensor
components. Find the linear combinations of binary products of x, y, and z that

may be labeled as TS and T6 .

Q)

B. There is a powerful formula for constructing an operator of any desired v
spherical tensor character from products of components of other operators
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10, Q

T (AL A= S AZSE T A T2) (4]
Ky

where A is a Wigner or Clebsch-Gordan coefficient, which is related to 3-j
coefficients as follows:

o2 J3 _ j1ml2—m3 (4. —1/2 ) jijajs
(ml my msj E—(m1+m2))_(_1) (2]3+1) AMle—M3'

Use the Thi’ [A1,A;] formula to construct the spherical tensor TS and T

components of f orbitals by combining products of linear combinations of
Cartesian labeled d and p orbitals. In other words, combine T [x,y,z] with

T([x,y.z] to obtain T,” as a linear combination of products of 3 Cartesian
components.

5. Angular Momenta

Consider a two-electron atom in the “electronic configuration” 3d4p. The electronic

states that belong to this configuration are ’F,'F, D, 'D, P, and 'P. There are 20+ 1)

(20, + 1) (2s; + 1) (252 + 1) = 60 spin-orbital occupancies associated with this
configuration. I am going to ask you to solve several angular momentum coupling

problems, using 3-j coefficients and the Wigner-Eckart Theorem for states belonging to
this configuration. However, I do not expect you to consider the anti-symmetrization

requirement that is the subject of lectures #30 - 36.

Spin-orbitals in the uncoupled basis set are denoted by n/m, smy(i) where # is the
principal quantum number and i specifies the name of the assumed-distinguishable
electron. Since s = 1/2 for all electrons, we can use an abbreviated notation for spin-

orbitals: /Ao/f where o corresponds to mg = +1/2 and B to my =—1/2. The two-electron
basis states are denoted ‘517‘1 (0/B), 2,1, (0(/[3)2> ,e.8. ‘3 -lo2- 1[3> where the first three

symbols are associated with e #1 and the second three with e” #2.

The many-electron quantum numbers L, My, S, Mg are related to the one-electron spin-

orbital quantum numbers by

M=) &
Mg =i 0

and L and S must be constructed from the proper linear combination of spin-orbital basis

states. For example,

‘3F,ML =4,Mg= 1>= |330011ax)
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This is a problem that concerns the coupled<>uncoupled transformation,

|L0 M Y= [0 A (A0, L0 ,M,)

Ay
where My = A, + A, and ¢, < /,. The same situation obtains for the spin part

|Ss,5,M )= |5,6,5,0,)(5,0,5,0,|S5,5,M) .

A. Use 3-j coefficients to derive the linear combination of six spin-orbital
occupancies that corresponds to the |*Po M; = 0) state. The six basis states are
3-100 11B), 13-1B 110y, 1300t 10B), 130B 100y, 1310t 1-1B), and [31B 1-1ar).
Note that you will have to perform three uncoupled—coupled transformations:
€17\,1 €17\.1 — L 51 / 2ML
$1015202 — S SlszMs
and

LMLSMS —> JLSMJ

I advise against using ladders plus orthogonality to solve this problem because M;
= 0 is the worst possible situation for this method.

B. The atom in question has a nonzero nuclear spin, [ = 5/2. This means that you
will eventually have to perform an additional uncoupled to coupled
transformation:

F=1+]

|IM,IM ) — | FIIM..).

The nuclear spin gives rise to “Fermi-contact” and magnetic dipole hyperfine
structure. The hyperfine Hamiltonian is

H" =) (as,*I+b °I).

The AF = AJ = AL = AS = Al = 0 special form for the Wigner-Eckart theorem for
vector operators may be used to replace the above “microscopic” form of H" by a
more convenient, but restricted, form

th =C JLSJ I
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171

because the microscopic H" contains 2 a;s; and 2 b, ., both of which are

1 1

vectors with respect to J.
H' =) (as,+b¢,)e]
=cys)el

where ¢y is a reduced matrix element evaluated in the |JLSM;) basis set

€y = <]LS

‘2 (aisj+bifi)H]LS>
where

Cps = <]LSMJ

Y (as; + bI.Z,.)‘ JLSM;> = c, s (JLSM, 1J1JLSM?).

i

ciLs 1S a constant that depends on each of the magnitude quantum numbers J, L,
and S (but not F and I). I will review this derivation and show you how to
evaluate the J, L, S dependence of ¢y s in a handout.

Similarly, the spin-orbit Hamiltonian

H = 2 C(n)L; es;

may be replaced by the AL =0, AS = 0 restricted form,
HSO = CLSL . S.

The purpose of this problem is to show that all of the fine (spin-orbit) and
hyperfine structure for all of the states of the 3d4p configuration can be related to
the fundamental one-electron coupling constants: asq, asp, bid, bap, C3d, and Cap.

Derive simple formulas for the hyperfine and fine structure for all [FJLSIME)
states of the 3d4p configuration (consistent with neglect of AL # 0, AS # 0 matrix
elements).

C. The six LS states that arise from the 3d4p electronic configuration split into 12
fine-structure J-components and, in turn, into 54 hyperfine F-components. The
eigenenergies are given (neglecting off-diagonal matrix elements between widely
separated J-L-S fine structure components) by cjrsJ*I and, alternatively, by matrix
elements of the microscopic forms of the H™ (and H*°) operators evaluated in the
explicit product-of-spin-orbitals basis set. The set of 12 {c;.s} can be related to
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four of the six fundamental coupling constants listed at the end of part B. There
are several tricks for expressing many-electron reduced matrix elements in terms
of one-electron reduced matrix elements. One trick is to start with “extreme
states”. Another is to exploit a matrix element sum rule based on the trace
invariance of matrix representations of H. For H>® use *F4 M = 4 to get Z;3F, *Po
M; = 0 (your answer to part A) to get (s, and (if you are brave: optional) the sum
rule for J =3, M; =3 to get CgD. For H" consider only °F4 Mg = (4+5/2) and (if
you are brave: optional) 'F3 Mg = (3 + 5/2).
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