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Lectures 13 & 14: From Hij Integrals 
to H Matrices 

I. The Two–Level Problem 
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ψ? bH11 = 1Hψ1dτ Z 
ψ? bH22 = 2Hψ2dτ Z Z b= ψ?Hbψ2dτ = H? = H?ψ1 

?dτ = VH12 1 21 ψ2 

bH is Hermitian. If b = H21H is real, H12 

± ±ψ± = c1 ψ1 + c2 ψ2 “completeness” bHψ± = E±ψ± an eigenvalue equation. 

Left multiply by ψ1 
? and integrate Z Z Z� � 

ψ? b ψ? b ± ± ± ± ψ? ± ±Hψ±dτ = H c ψ1 + c dτ = c V = E±ψ±dτ = E±(c + 0c )1 1 1 2 ψ2 1 H11 + c2 1 1 2 

± ± (1)c1 (H11 − E±) + c2 V = 0. 

1 
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Similarly, left multiply by ψ2 
? and integrate Z 
ψ? b ± ± ± ±H(c ψ2)dτ = c V + c2 1 ψ1 + c2 1 2 H22 Z 

±ψ? 
2 E±ψ±dτ = E±c2 

± ± (2)c1 V + c2 (H22 − E±) = 0. 

± c1 ± ±Thus we have two equations for . We must temporarily eliminate c and c in± 1 2 c2 
order to determine E±. 

Before we can solve for c ± and c ±, we must solve for E±.1 2 

± c V1 = − 
c ± 
2 H11 − E± 
± c1 H22 − E± 
± = − 
c V2 

Thus 

V H22 − E± 
= 

H11 − E± V 

V 2 = (H11 − E±)(H22 − E±) 

0 = E2 .± − E±(H11 + H22) + H11H22 − V 2 

This is a quadratic equation in E±. 

(H11 + H22) ± [(H11 + H22)2 − 4(H11H22 − V 2)]1/2 

E± = (3)
2 

Some simplifying notation: 

H11 + H22
E ≡ 

2 
H11 − H22

Δ ≡ . 
2 

Insert E and Δ into Eq. (3): 

(H11 + H22)
2 − 4H11H22 = (H11 − H22)

2 

E± = E ± [Δ2 + V 2]1/2 

x ≡ Δ2 + V 2 

E± = E ± x 1/2 . 
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± ±Next we must solve for c1 and c2 . The algebra is very complicated and there are many 

phase-related pitfalls. We will need to use all possible tricks to ensure self-consistency, as I 

will attempt to illustrate here. 

The derivation takes advantage of normalization 

± ±1 = (c1 )
2 + (c2 )

2 . 

After a lot of algebra: � � ��1/2
1 Δ± c1 = 1 ± 

1/22 x� � ��1/2
1 Δ 

c ± = ± 1   .2 x1/22 

Note that, in the limits V → 0 and V →∞ � �1/2 � �1/2
1 1± ±V → 0 c1 = (1 ± 1) , c2 = ± (1   1)
2 2� �1/2 

± ±V →∞ c1 = 
1
(1) = 2−1/2 , c2 =  2−1/2 . 
2

Both of these limits are consistent with expectations. 

It is always a good idea to verify the algebra by showing Z 
ψ? 
±ψ±dτ = 1 normalization Z 

ψ? 
 ψ±dτ = 0 orthogonality Z 

ψ? bHψ±dτ = E± correct eigen–energy ± Z 
ψ? Hbψ±dτ = 0 eigenstates of Hb are orthogonal.   

The most difficult of these tests is to show that ψ± → E±. 



5.61 Fall 2017 Lectures #13 & #14 Page 4 

Non-Lecture 

ψ± 1 ψ1 + c2 ψ2 
±± = c 

Z 
ψ? bHψ±dτ = (c± 

± 
1 )
2H11 + (c 

± 
2 )
2H22   2(c ± 

1 )(c 
± 
2 )V #� � �� � � �� "� �1/2

1 Δ 1 Δ Δ2 

= 1 ± H11 + 1   H22 ± 1 − V 
1/2 1/22 x 2 x x "� #�1/2

1 Δ Δ2 

= (H11 + H22) ± 
1/2 
(H11 − H22) ± 1 − V 

2 2x x "� #�1/2
Δ x − Δ2 

= E ± 
1/2 
(2Δ) ± V 

2x x � � 
Δ2 V 

= E ± ± V 
1/2 1/2x x

Δ2 V 2 

= E ± ± 
1/2 1/2x x
x − V 2 V 2 

1/2 = E ± ± = E ± x 
1/2 1/2x x

which is the expected and required result. 
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II. Matrix Version of the Two-Level Problem 

bHψ = Eψ 

is an eigenvalue problem. For every eigen-energy Ei there is an eigenfunction ψi. We have 

just seen that the exact solution to the simplest possible problem, the two–level problem, 

is algebraically challenging. We can approach this problem in a matrix formulism, which 

turns out to be the most powerful and insight–generating approach to the vast majority of 

quantum mechanical problems. The matrix Hamiltonian is � � � � 
E 0 Δ V 

H = + = E1 + H0 . 
0 E V −Δ 

H0 is a real and symmetric matrix. We have subtracted the average energy from the original 

H. We can always do this. The essential structure of the problem is in H0 . We will call this 

H from now on. The “elements” of this matrix are 

H11 = Δ 

H22 = −Δ 

H12 = H21 = V. 

[Does everyone know the rules for matrix multiplication?] 

NX 
(AB)mn = Amj Bjn 

j=1 

This H matrix operates on vectors ci where i = 1 and 2 for the two–level problem � � 
11 c = 
0 � � 
02 c = 
1 � �� � 

(c 1)T c 1 = 1 0 
1 
= 1 where T means “transpose”. Normalized. 

0 � �� � 
(c 2)T c 1 = 0 1 

1
= 0. Orthgonal

0 � �� � � � � � � � 
Δ V 1 Δ 1 0 

Hc1 = = = Δ + V . 
V −Δ 0 V 0 1 

This is an expression of completeness, analogous to 

bHψ1 = a1ψ1 + a2ψ2. 
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It means that the effect of Hb on one function may always be expressed as a linear combination 

of all members of the complete set of functions. In this case, we have 

a1 = Δ , a2 = V. 

This is exactly what we saw previously in the wavefunction picture where, left multiplying 

by ψ1 
? and integrating Z Z Z 

ψ1 
? b = 1 ψ1dτ + a2ψ1 

?ψ2dτHψ1dτ a1ψ
? 

H11 = a11 + a20 a1 = H11 = Δ. 

Also, multiplying by ψ2 
? and integrating Z 

ψ? b
2Hψ1dτ = a10 + a21 , a2 = H21 = V. 

The key point here is that we never actually look at the {ψi}. We start with all of the 

“matrix elements” of Hb evaluated in the complete {ψi} basis set. 

Next we solve for the energy eigenvalues and eigenvectors using the matrix formalism. 

We want to find the eigenvalues of the H matrix. There must exist a unitary trans-

formation of H that “diagonalizes” it. We are going to use a special class of 2 × 2 matrices 

that have the property � � 
1 0 

T† = T−1 or T−1T = = 1 
0 1 � � 

T11 T12T = 
T21 T22� � 
T ? T ? 

T† 11 21= 
T ? T ? . 
12 22 

T† means “conjugate transpose”. For a real symmetric matrix, H, we can forget about the 

complex conjugate and use TT (transpose) rather than T† . 

Now, for the matrix version of the Schrödinger Equation: 

Hc = Ec. 

Insert 

1 = TTT 

HTTT c = Ec 



	

� 

� 
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and left–multiply by TT 

(TT HT)(TT c) = E(TT c) eTT HT = H (the transformed H) 

TT c = c̃ (the transformed c). 

We say that T “diagonalizes” H � � e E1 0 
H = 

0 E2� � ec̃1 = 
1 

an eigenvector of H 
0 � �� � � � � � 

0 1 1e E1 E1Hc̃ = = = E10 E2 0 0 0 

TT �1stc = c̃ column of TT � �� � � � 
T T T T 1 T T 

TT 1 11 12 11c = = , notation: Trow, column T T T T 0 T T 
21 22 21 

thus � � 

H˜e c 1 = E1 
1 
0 

and � � 
0e = E2Hc̃ 2 ,
1 

which is consistent with e c = Ec̃,H˜

i is ith eand the eigenvector c̃ column of TT , where H = T†HT. Remember this! 



5.61 Fall 2017 Lectures #13 & #14 Page 8 

III. Now we look at the general form of a unitary trans-
formation for a 2–level problem. We think of T as 
a “rotation in ‘state space’ ” 

� � � � 
cos θ sin θ c s 

TT = , abbreviated as .− sin θ cos θ −s c 

Determine the value of θ that results in � � 
E+ 0eTT HT = H = 
0 E−� �� �� � � � 

c s Δ V c −s (c2 − s2)Δ + 2csV (c2 − s2)V − 2csΔ 
= 2 − s 2 − s

.−s c V −Δ s c (c 2)V − 2csΔ −(c 2)Δ − 2csV 

eWe want the off-diagonal elements of H to be zero 

0 = (c 2 − s 2)V − 2csΔ 
2cs V 

= 
c2 − s2 Δ 

2 cos θ sin θ = sin 2θ 

cos 2 θ − sin2 θ = cos 2θ 
sin 2θ V 

= tan 2θ = 
cos 2θ Δ � � 

1 V−1θ = tan . 
2 Δ 

Now use this result to determine energy–eigenvalues and eigenvectors: 

E± = E ± [Δ cos 2θ + V sin 2θ] 

= E ± 
1
[Δ2 + V 2]1/2 (derived earlier) 
2⎛ � �1/2 � �1/2 

⎞ 

1 + Δ − 1 − Δ ⎜ [Δ2+V 2]1/2 [Δ2+V 2]1/2 ⎟
T = 2−1/2 ⎝ � �1/2 � �1/2 ⎠ 

+ 1 − Δ 1 + Δ 
[Δ2+V 2]1/2 [Δ2+V 2]1/2 

You need to verify this result. The best way to convince yourself is by a few numerical 

examples, e.g. Δ = 1, V = 0.1, then Δ = 1, V = 1, and finally Δ = 1, V = 10. 



� 
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IV. Beyond the Two–Level Problem: N > 2 levels 

The eigen–energies for the two–level problem (2 × 2 H) are obtained as the solutions of a 

quadratic equation. The quadratic formula gives the two exact energy levels. 

There are N eigen–energies for the N–level problem (N × N H). No analytic formula 

exists that can provide the N values of {Ei} as explicit functions of the {Hij } matrix ele-

ments. However, exact values of each member of the set of N {Ei} are obtained iteratively by 

a variety of matrix diagonalization computer programs. We never need to concern ourselves 

with the algebraic complexities of finding the N eigen–energies {Ei} and eigenfunctions {ψi} 
or eigenvectors {ci} of an N × N H matrix or the N coupled linear homogeneous equations 

that arise from Hb . All we need is a “complete” set of “basis functions” {φi} with which to 

evaluate all Hij matrix elements. 

These complete sets of basis functions {φi} are almost always the eigenfunctions of one 
of our exactly solved problems (particle in a box, harmonic oscillator, rigid rotor, Hydrogen 

atom) and we have already seen several examples of problems where all {Hij } are derived 

semi–automatically and are expressed in terms of fundamental structural parameters. So 

now we are beginning to understand the relationship between what we want to know, the 

molecular constants, and what we are allowed to measure via the {Ei} and {ψi}. 

There are some easily verified facts about N × N H problems. 

1. There are N eigen–energies (some might be degenerate). 

2. There are N linearly independent eigen–functions or eigen–vectors, each explictly re-

lated to one of the eigen–energies. 

3. The eigen–functions and eigen–vectors can be put into orthogonal and normalized form: 

“ortho–normal” Z 
ψi

?ψj dτ = δij (Kronecker δ) ⎛ ⎞
j 
1c⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

j 
2� c

iT j i i i = δij .c c = c c c2 . . . 1 N . . . 
jcN 

All eigen–functions that belong to non–degenerate eigen–values are born orthogonal. 

Those that belong to degenerate eigen–values can be transformed into orthogonal form. 
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4. The value of the determinant of H, 

H11 H12 . . . H1N 

. . . . . . 
HN1 HN2 . . . HNN 

det(H) = 

������ 
������ 

is equal to the product of the N eigen–energies 

N

Ei = det(H) 
i=1 

and the trace of H, χ(H), is equal to the sum of the {Ei} 

Y 

N

χ(H) = Ei. 
i=1 

X 

5. All of the results cited here for H are valid for any Quantum Mechanical operator, A, 

that corresponds to an observable quantity, A. All that is required is that the operator 

A is Hermitian 

e

(Aij )
† ≡ A? = Aij .ji 

The computer program that “diagonalizes” the N × N H matrix also generates the 

complete and exact transformation 

H = 

⎛ 
E1 0 

E2 

⎞ ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
T†HT = .

0 
. . 

EN 

. 

The eigen–vector that belongs to the eigen–value Ei is ⎞⎛ ⎜⎜⎜⎝ 

T † 1i 
T ? 
2i 
. . . 
†TNi 

⎟⎟⎟⎠ , 

the ith column of T† . If all of the elements of H are real, then T and T† are real, and T−1 = 

TT = T† . For most applications you want the columns of TT , but for some applications 

(especially time–dependent perturbation theory) you want to know the linear combination 

of the eigen–functions that are equal to one of the basis functions, which is the reverse 

transformation XN
φj = ci

j ψi. 
i=1 
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the kth column of TT 
eigenfunctions X ?? 

N

T Tψk = ik φi 
the jth column of T i=1 6 

N N basis function X ? XX 
Tkjψk = Tkj Tik

T φi 

k k=1 i=1 

N NXX 
= Tik

† Tkj φi (TT = T−1) 
k=1 i=1 

NX 
= 1ijφi = φj . 

i=1 

Now for the bummer: most basis sets are of infinite dimension! Even the most pow-

erful computer in the world cannot diagonalize an infinite dimension H matrix. Perturbation 

Theory provides approximate (of a priori known accuracy) eigen–energies and eigen–vectors, 

even for an infinite dimension H. Perturbation Theory is a basis for both accurate numerics 

and for physical insight. 
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V. Prelude to Perturbation Theory 

We return to the two-level problem and derive some equations for 

E± and ψ± 

that foreshadow Rayleigh–Schrödinger non–degenerate perturbation theory: 

Non-Lecture 

Derive an equation for θ in terms of V and Δ: � � 
Δ V H11 + H22 H11 − H22

H = E + recall E = , Δ = 
V −Δ 2 2 � � 

cos θ − sin θ 
T = 

sin θ cos θ � � e E+ 0 
H = E1 + TT HT = E1 + 

0 E− 

What does TT E1T yield?� � 
(c2 − s2)Δ + 2csV (c2 − s2)V − 2csΔ 

where TT HT = . 
(c2 − s2)V − 2csΔ −(c2 − s2)Δ − 2csV 

The transformation TT HT corresponds to a rotation of H in state space and θ is 

called the “mixing angle”. We want to solve for θ and then derive everything we need from 

the value of θ that diagonalizes H. 

eWe determine θ by requiring the off–diagonal element of H to be zero. 

θ = (c 2 − s 2)V − 2csΔ 
2cs 

= V /Δ 
c2 − s2 

sin 2θ 
= tan 2θ = V /Δ 

cos 2θ 

Now that we have θ(V, Δ) we can simplify: 
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θ = 
1 
tan−1(V / Δ), expand in a power series 
2 

tan−1(V /Δ) = (V / Δ) − 
1
(V / Δ)3 + 

1
(V / Δ)5 − . . . 

3 5
1 1 1 

θ = (V / Δ) − (V / Δ)3 + . . . 
2 2 3

�� � � 
E± = E ± c 2 − s 2 Δ+ 2csV 

(2θ)2 

cos 2 θ − sin2 θ = cos 2θ = 1 − + . . . 
2! 
(2θ)3 

2 cos θ sin θ = sin 2θ = 2θ − + . . . 
3! 

After some algebra, and retaining only terms in E± of order up to V 2/ Δ, " � �2 � �# 
21 V 

E± = E ± Δ − Δ 2 Δ + V 2
1 V 

2! 2 Δ � � � � 
1 V 2 V 2 V 2 

= E ± Δ − + = E ± Δ+ . 
2 Δ Δ 2Δ 

You will be referring to this as “matrix element squared over energy denominator.” 

For the eigen–states or eigen–vectors, retaining terms of order up to (V/Δ)2 � � 
cos θ sin θ 

TT = − sin θ cos θ 

θ2 1 
cos θ ≈ 1 − = 1 − (V / 2Δ)2 

2! 2
θ3 

sin θ ≈ θ − = V / 2Δ 
3!� � 

ψ+ = 1 − 
1
(V / 2Δ)2 φ1 − V / 2Δφ2
2 � � 

ψ− = (V / 2Δ)φ1 + 1 − 
1
(V / 2Δ)2 φ2. 
2

R 
By casual inspection, ψ+ψ−dτ = 0. Normalization is also OK if we discard terms 

of order (V/2Δ)4 . We will see that ordinary perturbation theory through second–order gives 

exactly these results. 
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