
Determine the oxidation number of Cl in hypochlorous acid, HOCl.

- 1. -2
- 2. -1
- 3. 0
- 4. +1
- 5. +2

Determine the oxidation number of Cl in hypochlorous acid, HOCl.

- 1. -2
- 2. -1
- 3. 0
- 4. +1
 - 5. +2

What must be happening when Pt (s) $|H_2(g)|H^+$ (aq) acts as an anode?

- 1. Pt (s) is oxidized
- 2. $H_2(g)$ is oxidized
- 3. H⁺ (aq) is oxidized
- 4. Pt (s) is reduced
- 5. H₂ (g) is reduced
- 6. H⁺ (aq) is reduced

What must be happening when Pt (s) $| H_2(g) | H^+(aq)$ acts as an anode?

- 1. Pt (s) is oxidized
- 60% (2)2. $H_2(g)$ is oxidized
- $^{15\%}$ 3. H^+ (aq) is oxidized
- 4. Pt (s) is reduced
- 5. $H_2(g)$ is reduced
- 6. H⁺ (aq) is reduced

Which is the correct $\Delta E(\text{cell})$?

Standard Reduction Potentials

$$Cu^{2+}$$
 (aq) + 2e⁻ \Rightarrow Cu (s) E° (Cu²⁺/Cu(s)) = +0.3402 V
Zn (s) \Rightarrow Zn²⁺ (aq) + 2e⁻ E° (Zn²⁺/Zn(s)) = -0.7628 V

1.
$$= (+0.3402 \text{ V}) - (-0.7628 \text{ V}) = +1.1030 \text{ V}$$

2.
$$= (-0.3402 \text{ V}) - (+0.7628 \text{ V}) = -1.1030 \text{ V}$$

3.
$$= (+0.3402 \text{ V}) - (+0.7628 \text{ V}) = -0.4226 \text{ V}$$

4. =
$$(-0.3402 \text{ V}) - (-0.7628 \text{ V}) = +0.4226 \text{ V}$$

Which is the correct $\Delta E(\text{cell})$?

Standard Reduction Potentials

$$Cu^{2+}$$
 (aq) + 2e⁻ \Rightarrow Cu (s) E° (Cu²⁺/Cu(s)) = +0.3402 V
Zn (s) \Rightarrow Zn²⁺ (aq) + 2e⁻ E° (Zn²⁺/Zn(s)) = -0.7628 V

81%
$$(-0.7628 \text{ V}) = (+0.3402 \text{ V}) - (-0.7628 \text{ V}) = +1.1030 \text{ V}$$

5%
$$2. = (-0.3402 \text{ V}) - (+0.7628 \text{ V}) = -1.1030 \text{ V}$$

11% 3. =
$$(+0.3402 \text{ V}) - (+0.7628 \text{ V}) = -0.4226 \text{ V}$$

3% 4. =
$$(-0.3402 \text{ V}) - (-0.7628 \text{ V}) = +0.4226 \text{ V}$$

Which statement is correct?

- 1. A galvanic cell uses a spontaneous chemical reaction to generate an electric current.
- 2. A galvanic uses electrical energy to carry out a nonspontaneous reaction.
- 3. An electromagnetic cell uses electrical energy to carry out a nonspontaneous reaction.
- 4. An electromagnetic cell uses a spontaneous chemical reaction to generate an electric current.
- 5. 1 and 3
- 6. 2 and 4

Which statement is correct?

- 1. A galvanic cell uses a spontaneous chemical reaction to generate an electric current.
- 2. A galvanic uses electrical energy to carry out a nonspontaneous reaction.
- 3. An electromagnetic cell uses electrical energy to carry out a nonspontaneous reaction.
- 4. An electromagnetic cell uses a spontaneous chemical reaction to generate an electric current.
- ^{65%} 5. 1 and 3
- 6. 2 and 4

Is F₂ a good oxidizing agent?

- 1. No. It is hard to oxidize.
- 2. Yes. It is easy to oxidize.
- 3. No. It is hard to reduce.
- 4. Yes. It is easy to reduce.

Is F₂ a good oxidizing agent?

- 1. No. It is hard to oxidize.
- 2. Yes. It is easy to oxidize.
- 3. No. It is hard to reduce.
- 69% (2)4. Yes. It is easy to reduce.

Calculate Q for
$$Cu^{2+}(aq) + Zn(s) \Rightarrow Zn^{2+}(aq) + Cu(s)$$
.

The concentration of Zn^{2+} ions is 0.10 M and the concentration of Cu^{2+} ions is 0.0010 M.

- 1. Not enough information is given.
- 2. 1.0×10^2
- 3. 1.0×10^{-2}
- 4. 1.0 x 10⁻⁴

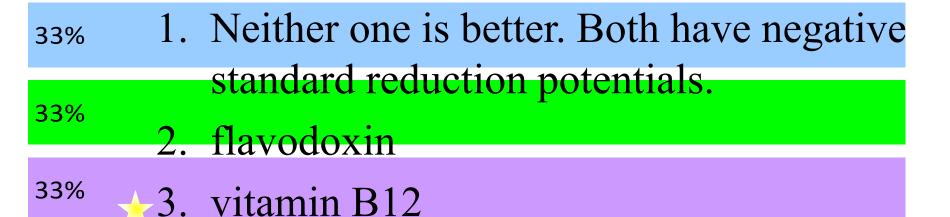
Calculate Q for
$$Cu^{2+}(aq) + Zn(s) \Rightarrow Zn^{2+}(aq) + Cu(s)$$
.

The concentration of Zn²⁺ ions is 0.10 M and the concentration of Cu²⁺ ions is 0.0010 M.

1. Not enough information is given.

75%
$$\sqrt{2}$$
. 1.0 x 10²

Which is a better reducing agent?


 E° for vitamin B₁₂ is -0.526 V. E° for flavodoxin is -0.230 V.

- 1. Neither one is better. Both have negative standard reduction potentials.
- 2. flavodoxin
- 3. vitamin B12

Which is a better reducing agent?

 E° for vitamin B₁₂ is -0.526 V. E° for flavodoxin is -0.230 V.

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.