
10.34 Fall 2015Numerical Methods Applied to Chemical Engineering

Homework #2: Linear Algebra, Systems of Nonlinear Equations

Problem 1 (20 points). An initial value problem (IVP) in linear time-invariant ODEs is given by

dx
(t) = Ax(t), x(0) = x0, (1)

dt

where A ∈ RN×N , and where x0 ∈ RN is the initial condition. Suppose that A is diagonalizable
as A = WΛW−1.

1. Determine the exact analytical solution to (1) by carrying out the following steps. Firstly,
rearrange (1) to obtain a simpler IVP which describes the time evolution of the modified
variables y := W−1x. Include appropriate initial conditions for y(0). Solve this IVP to
obtain an analytical expression for y(t) at any time t. Lastly, use the definition of y(t) to
obtain an analytical expression for x(t).

HINT: when solving the simpler IVP for y(t), it might help to consider each equation in the
ODE system separately.

2. The IVP (1) is said to be unstable if the solution grows in an unbounded fashion, asymptot-
ically stable if it decays to the origin, and neutrally stable if neither of these happen. Given
your exact analytical solution to (1), describe how you could use the eigenvalues and/or
eigenvectors of A to characterize the stability of (1).

3. Consider the following batch chemical system which we wish to model similarly to (1): A

B → P . The time evolution of the system is given according to the following model equations:

d[A]
=

dt
−k1[A] + k−1[B],

d[B]
= k1[A]

dt
− (k−1 + k2)[B],

d[P ]
= k2[B].

dt

The rate coefficients are k = 10−4 1
1 s− , k 1 = 10−2 s−1, and k2 = 10−3 s−1. We are−

particularly interested in the situation where initially (time t 7
0), [A] = 10− mol/L, [B] = 0,

and [P ] = 0.

(a) Write an analytical solution for [P ] in terms of [B].

(b) Show how eigen-decomposition of the first two differential equations IVPs can be used
to determine [A] and [B] as a function of time.

(c) Write the entire set of equations in matrix vector form dv (t) = Mv(t) where M is a 3x3dt
square matrix and v is a column vector. What is the initial condition vector v(t0)?

(d) Although it is convenient to transform the matrix M to a diagonal form that is not always
possible. If M is singular does that imply it is not diagonalizable? Is M being singular a
necessary condition for this system of differential equations to have a non-trivial steady
state solution (other than v(t) = 0)?

1



(e) Describe how to test if M is diagonalizable and fully explain your logic, and what criteria
are necessary to apply. Additionally report a series of commands to execute such
a test.

(f) In this case, M is not diagonalizable. You can perform a Schur decomposition to factorize
M = UT(UH) where U is an unitary matrix, and T is upper triangular. (Note UH

denotes complex conjugate transpose of U.) Show how to use the Schur decomposition
in the same fashion as the eigen-decomposition to change variables and form a new set
of differential equations which is decoupled in at least one variable.

(g) Perform the Schur decomposition in using the built-in function schur. Report
T and U. Give an analytical expression for y3(t) where y = UHv in terms of M,T,U
and/or the initial conditions. Explain the physical significance of y3 and its behavior.

2

MATLAB®

MATLAB



Problem 2 (15 points). Consider the problem of computing the eigenvalues and eigenvectors of a
matrix A ∈ RN×N . That is, find any values of (v, λ) satisfying the nonlinear equation:

Av = λv.

To uniquely define the eigenvectors, suppose this nonlinear equation is supplemented with an equa-
tion restricting the length of the eigenvectors:

‖v‖2 = 1.

In many applications, approximations for only a few of the largest or smallest eigenvalues and
their corresponding eigenvectors are needed, and iterative methods are employed to find them.
In this problem, you will explore application of the Newton-Raphson method to finding eigen-
value/eigenvector pairs.

1. Write a vector valued function of v and λ whose roots satisfy the two equations above.

2. Derive the Newton-Raphson step for this function. Write a short MATLAB script that applies
this iterative map to a random 10×10 matrix to find an eigenvalue/eigenvector pair to within
a tolerance of 10−8. Use the built-in MATLAB routine “eig” to check your result.

3. Suppose Newton’s method can be made to typically converge to different eigenvalue/eigenvector
pairs after k iterations. Estimate the number of arithmetic operations required to find m
eigenvalue/eigenvector pairs of A.

4. Are there properties of the Newton-Raphson method that make it ill-suited to target specific
eigenvalues, say the largest or the smallest in magnitude? Does it cause a problem if two
eigenvalues are equal, or complex-conjugates?

5. In practice, the eigenvalues and eigenvectors of matrices are approximated using a method
called Arnoldi iteration, and not the Newton-Raphson approach derived in the previous parts.
The Arnoldi method is a much more sophisticated version of the classic power iteration for
determining an eigenvector denoted vmax corresponding to the largest magnitude eigenvalue
of a matrix:

Akb→ vmax as k →∞,

where b is an arbitrary column vector of length N . Given an approximation for vmax, derive
an equation for the corresponding eigenvalue. Show that the power iteration will exhibit linear
convergence to vmax when A has a complete set of eigenvectors, the two largest eigenvalues
of A are distinct, and bTvmax 6= 0.

6. Estimate the number of arithmetic operations needed to find an eigenvalue, eigenvector pair
if the power method were truncated after a finite number of iterations, k. How does this
compare with the Newton-Raphson approach you derived in the previous parts?

3



Problem 3 (15 Points). This problem requires you to implement Newton’s method in To
assist you with this task portions of a working implementation have been provided in the function
file FunctionEvaluator.m. This function, when given an input vector x returns a vector f(x) of
function values of size n = length(x) and a Jacobian matrix of partial derivatives J ∈ Rn×n. This
system has a unique solution of f(1) = 0 which you may find helpful for testing your code.

This system consists of an even number of a system of nonlinear equations. The number of
equations and dimension of the input are equal.

f1(x) = (1− x1)2

f 2 2
2(x) = 10(x1 − x2)
f3(x) = (1− x3)2

f4(x) = 10(x3 − x24)2

. . .

1. Complete the implementation of Newton’s Method. Make sure that your subroutine detects
convergence to an input tolerance, but also detects, and reports when something goes wrong
with the algorithm, and cannot go into an infinite loop. Produce a table showing the steps
taken by your implementation to reach a solution for the inputs x = [1.5, 1.5, 2, 2]′, and
x = [−1.5, 2.1,−1.9, 2.1,−1.9, 2.1,−1.5, 2.1]′. The columns of your table should be: iteration
number, norm of x , and norm of objective value.

2. For the initial input of x = [1.5, 1.5, 2, 2]′ produce two figures, each with 4 subplots. In the
first figure, plot the function values f(xi) for i = 1, . . . , 4 as a function of the first 5 Newton’s
method steps. In the second figure, plot xi for i = 1, . . . , 4 as a function of the first 5 Newton’s
method steps.

3. The code provided in FunctionEvaluator uses dense matrix storage. In this system signifi-
cant performance increases are possible by utilizing the sparse nature of the Jacobian. Report
the sparsity pattern, and bandwidth of the Jacobian matrix from the FunctionEvaluator

function.

4. With the current sparsity pattern, or an improved variable ordering of your own devising,
implement a new version of FunctionEvaluator called SparseEvaluator using a minimal
number of vectors for Jacobian storage. Also, update your Newton’s Method code to utilize
the sparsely stored Jacobian. Verify the same results are found for the two inputs in the
first part of this problem. Compare the time it takes to run your Newton’s Method using
SparseEvaluator to that using the original FunctionEvaluator for n = 4.

10.34 Staff 2010-2015: September 17, 2015

4

MATLAB.



MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu



