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Feed-forward neural networks

We have been considering neural networks that use firing

rates, rather than spike trains. (‘'rate model’)

Synaptic input is the firing rate of the input neuron times a

synaptic weight w. I =

S

The output firing rate is some non-linear function
of the synaptic input.
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Feed-forward network

* Implements an arbitrary matrix transformation

v=Wu

O




Recurrent networks

« Today we will consider the case where there are also connections
between different neurons in the output layer

b =
o 1 2 3 4
« Develop an intuition for how
recurrent networks respond to
their inputs
* Examine computations .
a= vV

performed by recurrent
networks (amplifier, integrator,
sequence generation, short

term memory

« Use all the powerful linear algebra tools we have
developed!



Learning Objectives for Lecture 18

Mathematical description of recurrent networks
Dynamics in simple autapse networks
Dynamics in fully recurrent networks
Recurrent networks for storing memories

Recurrent networks for decision making (winner-take-all)



Learning Objectives for Lecture 18

« Mathematical description of recurrent networks



Time dependence

« The steady state firing rate of our output neuron looks like this...

V. :F[I]:F[wu]
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* But neurons don’t respond instantaneously to current inputs

Synaptic delays
Dendritic propagation input neuron

Membrane time constant input spike
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Time dependence

« We model the firing rate of our model neuron as follows:

step_of firing_rate.m

u(t)

v(t)

input neuron

*  We will look at how networks respond to changes in their

inputs v (1) = F[wu(t)] W@

output neuron

Tn% = —v+ F[wu(t)]




Time dependence

* We can incorporate time-dependence into our general feed-
forward network...

Feed-forward weight matrix Wb

dv “
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* The time dependence is really boring in a feedforward
network, but it is extremely important in RNNs.



Recurrent networks

« We will now consider the case where there are connections
between different neurons in the output layer

 Two kinds of input Feed-forward weight matrix W

Feed-forward input e e o 1

W ii \ B
Recurrent input _
a= V
Mv

Recurrent weight matrix M

dv . ~ -
Tn—vz—v+F[Wu+Mv] to / \froma_’
dt




Recurrent networks

« We will now consider the case where there are connections
between different neurons in the output layer

Feed-forward input .
- ] ﬁﬁ\ Feed-forward weight matrix VVab
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Recurrent weight matrix M
dv _ ~ .
Tnd—z—v+F[Wu+Mv] to / \froma_’
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Recurrent networks

«  We will simplity this equation to focus on the recurrent network

* Rather than writing the input as a vector of input firing rates,
write a vector of effective inputs to each output neuron.
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Recurrent networks

« We will start by analyzing the case with linear neurons

For linear neurons

|

F(x)=X
Thus...
g
Tn—v =—-v+M
dt
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This is a system of coupled
equations!



Learning Objectives for Lecture 18

* Dynamics in simple autapse network



Recurrent networks

« Consider the case that M is a diagonal matrix
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Recurrent networks

* Note that if M is a diagonal matrix

h
A

! O 1 2 3
M= A= Ay

0o~

] S OFROF! %&
rnﬂ = —V+AV+h U U
dt
d We have n independent equations —
Va
T = =V + lava + h, each neuron acts independently of all

! the others



Recurrent networks

ha
Rewrite our equation: l
T b, =—v + Av +h
dt %%
There are three cases to consider
T, Cz’a = —(1-24,)v, +h,
t
—
>0 =0 <0
Start with the case that: A <1
T dv, h,
= —v +
1-A, dt 1-1, A soluti , eforel
—— —— solution we've seen pbetore!
x dv j v()=v, _+(,— aoo)e_m“
T —=-v,+v ’ ’

“dt ©er i i
Exponentlal relaxation



Recurrent networks

* Positive (excitatory) feedback acts to amplify the steady state activity
of each neuron by an amount that depends on the strength of the

feedback!

* Positive feedback amplifies the response and slows the time-
constant of the response



Recurrent networks

* Negative (inhibitory) feedback acts to suppress the steady state
activity of a neuron by an amount that depends on the strength of

the feedback.

’ 2=0 T
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* Negative feedback suppresses the response and speeds the time-
constant of the response



Recurrent networks

« If 2<1,the activity always relaxes back to zero when the
input is removed.

time



Recurrent networks

* How do we represent the response of a network of neurons.

State-space trajectories

h, Input
A
* Cool computations < l/; .
— Amplifier
— Integrator
— Memory
Y2 Output
— Sequence generator A P

b
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State-space trajectories
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Learning Objectives for Lecture 18

* Dynamics in fully recurrent networks



Recurrent networks

* Now let’s look at the more general case of recurrent connectivity.
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Recurrent networks

« We saw how the behavior of a recurrent network is extremely
simple to describe if M is diagonal.

« So let's make M diagonal!  Rewrite M as follows

M = DAD'

where A is a diagonal matrix.

hy h, hy, hy
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Recurrent networks

* How do we write M as AP’ ?

* Solve the eigenvalue equation M ® = DA

o The diagonal elements of A are the A
eigenvalues of M

o The columns of ¢ are the eigenvectors of M
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e Remember that...




Recurrent networks

M® = DA Mf =21
* If M is a symmetric matrix, then ...

o the eigenvalues are real

o (P is a rotation matrix. The eigenvectors give us an
orthogonal basis set:

\hp
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Recurrent networks

« Now we are going to write our vector of output firing rates
in this new basis.

Project y onto each of the new basis vectors.
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« Express y as a linear combination of basis vectors

v=qgfitohtof+ ..



Recurrent networks

e Of course V is a function of time, so we have to write...

v(t) = Cl(f)]% + cz(t)]A”2 + c3(t)]A§ + ...
{OEPWIOY)
where
¢, () =V(1) f,

 In matrix notation, we write this change-of-basis as

v=0¢ c=0" v



Recurrent networks

* Let's rewrite our network equation in this new basis set...

dv

T—=-V+ MV+h v=®¢
dt
TnCD%:—CDE+ M®¢ + h
t

« But we have chosen a basis set ¢ such that

M D = DA

* Thus...

r,;b% = —®F + OAC + h



Recurrent networks

Tnd)% = —®¢ + OAC + h

« Multiply both sides from the left by ¢’

dc

T DP— = —D'DF + O'DAE + D' &
- dt N
Tn%:—c + AC + I, h =@ h

 But this is just our original network equation with a diagonal
weight matrix!



Recurrent networks

*  We can rewrite the equation for our network as n independent
equations for n independent ‘modes’ of the network

* We can think of this transformation as making a new network with
only autapses.
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* The activities C, (t) of our network modes represent activity of linear
combinations of neurons in our original network



Recurrent networks

* Let's find the steady-state solution of our system of equations...

Tn£=—E+AE+(DTi_i ‘L’nﬂ=—17+M\7+f_i
dt dt
dc I
T—=—-Ic+Ac +Dh v = d¢
dt
X: —(I=AN)C+Dh
0=—-(I-ANZ¢. +Dh (I-AN)¢. = d'h
¢ =(I-A)V'®h
O = O(I-A)'Dh v, = ®c,
——
V= ®I-A)'D h



Recurrent networks

 The steady-state solution (with input vector p ) is:

V=0 -AY'D h v =

\ J
Y

Q
/bl

eigenvectors?

this matrix has the same eigenvectors as M |

1 A A
1_;th Gﬁl:gﬂﬁl

and has eigenvalues g, =

« So what happens if our input is parallel to one of the eigenvectors?

L ) . ) 1
b=, Y G

Il

* Then, in steady state, the output will be parallel to the input!



Recurrent networks

If our input vector is parallel to one of the eigenvectors, then our
steady-state output will be parallel to the input.

In this case, our input activates only one mode of the network, and
no other mode.

The response of the network to inputs along each of the
eigenvectors (modes) is amplified or suppressed by a gain factor

« The time constant of the response is increased or decreased by the
same factor




Recurrent networks

* Now let’s look at a case where two output neurons are connected to
each other by mutual excitation.

hy h,
What is the weight matrix? l l
0.8
0 038
M = =
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Recurrent networks

* If the input is parallel to the eigenvectors, then only one mode is
excited.




Recurrent networks

If the input is not parallel to an eigenvector, we break the input into
a component along each mode

=(h-f)f+h-ff h
2 h 7 l 0_81

v
r_ 11~ 0 ~ 1 (1
h= F=l)
A, =-08 2, =08
<€ >V
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Recurrent networks

« Two output neurons are connected to each other by mutual
excitation.

h h,




Recurrent networks

* Now let’s look at a case where two output neurons are connected to
each other by mutual inhibition.

What is the weight matrix? l l
0 08
M = = —0.3
( 08 0 ] ME=dA @
—0.8




Recurrent networks

« Two output neurons are connected to each other by mutual

inhibition.

T h,




Learning Objectives for Lecture 18

* Recurrent networks for storing memories



Recurrent networks

 We have described the case where ) < 1.

What happens when A =17

dc,

T % = —(1=A)c, + f,-h()
dt \ )
0
a’1 A
d‘; Foh@t) = @)

1 4
¢ (1) = ¢ (0) + - ! h,(T)dT

Integrator!

hfl(t) = ﬁﬁ(t)



Recurrent networks

What happens when A >17

dc A
t S = —(1=A)e + fh()
dt
dc A
7,20 = (=g + f-h() )
—— 1
>0
<€ )f
hy,
Exponential growth! 1
<€ )f

hfl(t) = ﬁﬁ(t)



Recurrent networks

* The behavior of the network depends critically on 2

A<1 A=1 A>1

Exponential relaxation Integration Exponential growth

C G

< < >
h h
flA flA
< > < > < >
l [ [
With zero input... With zero input... MEMORY!
relaxation back to zero persistent activity!

45



Recurrent networks
I

* Networks with )} >1 have memory!
dc, l

T,— = (L —Dq + hy, (1) %)ﬂ )

T.— = Cl(t):()

«  With zero input, zero is an ‘unstable fixed point’ of the network




Recurrent networks

Add a saturating activation function F(x)

v=F()

A
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Recurrent networks

v=F()
« Saturating activation function plus eigenvalues greater
than 1 lead to stable states other than zero! < 1£ S
<| I
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Recurrent networks

e Two-neuron network that has two attractors
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Learning Objectives for Lecture 18

* Recurrent networks for decision making (winner-take-all)



Winner-take-all network

Implements decision making

Network will remain in attractor 1 if h > h,

Network will remain in attractor 2if h, > h

51



Winner-take-all network

* Implements decision making

=0 *
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Learning Objectives for Lecture 18

Mathematical description of recurrent networks
Dynamics in simple autapse network
Dynamics in fully recurrent networks
Recurrent networks for storing memories

Recurrent networks for decision making (winner-take-all)



Recurrent networks

* Networks with many attractors...

V)
A

h
| |
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Hopfield networks

* Networks with many attractors...

2" possible states !
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