
Introduction to Neural
Computation

Prof. Michale Fee
MIT BCS 9.40—2018

Lecture 18
Recurrent Neural Networks

• We have been considering neural networks that use firing
rates, rather than spike trains. (‘rate model’)

u

v

input neuron

output neuron

w

2

• Synaptic input is the firing rate of the input neuron times a
synaptic weight w.

Is = wu

v = F Is[] = F wu[]

• The output firing rate is some non-linear function
of the synaptic input.

I

F(I)

θ

binary threshold neuron

Feed-forward neural networks

I

F(I)

linear neuron v = wu

3

v =W u

Feed-forward network
• Implements an arbitrary matrix transformation

1 2 3 4

1 2 3 4

v

!u

• Today we will consider the case where there are also connections
between different neurons in the output layer

Recurrent networks

4

1 2 3a	=
v

1 2 3 4
b		=

• Develop an intuition for how
recurrent networks respond to
their inputs

• Examine computations
performed by recurrent
networks (amplifier, integrator,
sequence generation, short
term memory

• Use all the powerful linear algebra tools we have
developed!

Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse networks

• Dynamics in fully recurrent networks

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)

5

Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)

6

Time dependence
• The steady state firing rate of our output neuron looks like this…

v∞ = F Is[] =F wu[]
• But neurons don’t respond instantaneously to current inputs

Membrane time constant

Dendritic propagation

7

Synaptic delays

input spike

Î syn (t)
post-synaptic current

u

v

input neuron

output neuron

w

Time dependence
• We model the firing rate of our model neuron as follows:

τn
dv
dt

= − v + F wu(t)[]
8

u(t)

v(t)

step_of_firing_rate.m

u

v

input neuron

output neuron

w

τn
dv
dt

= − v + v∞

• We will look at how networks respond to changes in their
inputs v∞(t) = F wu(t)[]

• We can incorporate time-dependence into our general feed-
forward network…

9

τn
dv
dt

= − v + F W u⎡⎣ ⎤⎦

Time dependence

v∞ = F W u⎡⎣ ⎤⎦

τn
dv
dt

= − v + v∞
u1 2 3 4

1 2 3a	=
v

Feed-forward	weight	matrix Wab

• The time dependence is really boring in a feedforward
network, but it is extremely important in RNNs.

• We will now consider the case where there are connections
between different neurons in the output layer

Recurrent networks

10

Recurrent	weight	matrix Maa '

τn
dv
dt

= − v + F W u +M v⎡⎣ ⎤⎦ to	a from	a’

• Two	kinds	of	input

Feed-forward	input

 W
u

Recurrent	input

 M
v

Feed-forward	weight	matrix Wab

u1 2 3 4

1 2 3a	=
v

W u =
w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

u1
u2
u3
u4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

• We will now consider the case where there are connections
between different neurons in the output layer

Recurrent networks

11

Recurrent	weight	matrix Maa '

τn
dv
dt

= − v + F W u +M v⎡⎣ ⎤⎦

M v =
m11 m12 m13
m21 m22 m23
m31 m32 m33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

v1
v2
v3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Feed-forward	weight	matrix Wab

to	a from	a’

Feed-forward	input

Recurrent	input

u1 2 3 4

1 2 3a	=
v

• We will simplify this equation to focus on the recurrent network

Recurrent networks

12

1 2 3

Maa '

τn
dv
dt

= − v + F

h +M v⎡⎣ ⎤⎦


h =W u

• Rather than writing the input as a vector of input firing rates,
write a vector of effective inputs to each output neuron.

1 2 3

v

• We will start by analyzing the case with linear neurons

Recurrent networks

13

τn
dv
dt

= − v + F

h +M v⎡⎣ ⎤⎦

 F(
x) = x

• For linear neurons

τn
dv
dt

= − v + M v +

h

Thus…

This is a system of coupled
equations!

1 2 3

Maa '

1 2 3

v


h

Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)

14

• Consider the case that M is a diagonal matrix

Recurrent networks

15

1 2 3

1 2 3a =

Autapse

M =

λ1
λ2

λ3


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟0

0

λ1 λ2 λ3


h

• Note that if M is a diagonal matrix

Recurrent networks

16


h

M = Λ =

λ1
λ2

λ3
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟0

0 1 2 3

1 2 3a = λ1 λ2 λ3

τn
d!v
dt

= −
!v +Λ !v +

!
h

τn
dva
dt

= − va + λava + ha
We have n independent equations –
each neuron acts independently of all
the others

• There are three cases to consider

Recurrent networks

17

ha

λa

τn
dva
dt

= − 1− λa()va + ha

τn
1− λa

dva
dt

= − va +
ha

1− λa

τa
dva
dt

= − va + va,∞

> 0 = 0 < 0
λa < 1• Start with the case that:

τn
dva
dt

= − va + λava + ha

• Rewrite our equation:

va (t) = va,∞ + (v0 − va,∞)e
− t /τa

A solution we’ve seen before!

Exponential relaxation

Recurrent networks

18

• Positive (excitatory) feedback acts to amplify the steady state activity
of each neuron by an amount that depends on the strength of the
feedback!

3ha
2ha
ha

va,∞ = ha
1− λa

va (t)

t

• Positive feedback amplifies the response and slows the time-
constant of the response

ha

λa

τn 2τn 3τn

λ = 0.66

λ = 0.5

λ = 0

τa =
τn
1− λa

t
ha

0 < λa < 1

Recurrent networks

19

• Negative (inhibitory) feedback acts to suppress the steady state
activity of a neuron by an amount that depends on the strength of
the feedback.

ha

ha / 2
ha / 3

va (t)

t

• Negative feedback suppresses the response and speeds the time-
constant of the response

λ = 0
λ = −1

λ = −2

τnτn
2

λa < 0

ha

τn
3

va,∞ = ha
1− λa

τa =
τn
1− λa

t
ha

λa < 0

Recurrent networks

20

• If , the activity always relaxes back to zero when the
input is removed.

λa <1

ha

λ < 1

va (t)

ha
t

time

h1

h2 Input

Recurrent networks

21

• How do we represent the response of a network of neurons.

State-space trajectories

v1

v2 Output

• Cool computations
– Amplifier
– Integrator
– Memory
– Sequence generator

State-space trajectories

22

h1

0.7

h2

−0.7

Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)

23

Recurrent networks

24

• Now let’s look at the more general case of recurrent connectivity.

M = m11 m12
m21 m22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m21

m12

h1 h2

m11
m22

Recurrent networks

25

• We saw how the behavior of a recurrent network is extremely
simple to describe if M is diagonal.

• So let’s make M diagonal!

M = ΦΛΦT

Rewrite M as follows

where is a diagonal matrix. Λ

m21

m12

h1 h2

m11
m22

hf 1 hf 2

λ1 λ2

Recurrent networks

26

MΦ = ΦΛ• Solve the eigenvalue equation

Λ=

λ1
λ2

λ3


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟0

0o The diagonal elements of are the
eigenvalues of

Λ
M

o The columns of are the eigenvectors ofΦ M

Φ = f̂1 f̂2 f̂3  f̂n⎡

⎣
⎤
⎦

M f̂α = λα f̂α
• Remember that…

• How do we write M as ?ΦΛΦT

Recurrent networks

27

M f̂µ = λµ f̂µ

• If M is a symmetric matrix, then …

f̂i ⋅ f̂j = δij

MΦ = ΦΛ

o the eigenvalues are real

o is a rotation matrix. The eigenvectors give us an
orthogonal basis set:
Φ

ΦTΦ = I

Recurrent networks

28

f̂1

f̂2

• Now we are going to write our vector of output firing rates
in this new basis.

v

 cα = v ⋅ f̂α

v = c1 f̂1 + c2 f̂2 + c2 f̂3 + ...

• Express as a linear combination of basis vectors
v

 c1 =
v ⋅ f̂1

Project onto each of the new basis vectors.
v

v

Recurrent networks

29

c = ΦT v

!v(t) = c1(t) f̂1 + c2 (t) f̂2 + c3(t) f̂3 + ...

• Of course is a function of time, so we have to write…
v

 cα (t) =
v(t) ⋅ f̂α

v(t) = ci (t) f̂i
i=1

n

∑
or

where

v = Φ c

• In matrix notation, we write this change-of-basis as

Recurrent networks

30

v = Φ c

τn
dv
dt

= − v + M v +

h

τnΦ

dc
dt

= −Φc + MΦ c +

h

MΦ = ΦΛ

• But we have chosen a basis set such thatΦ

• Let’s rewrite our network equation in this new basis set…

τnΦ

dc
dt

= −Φc + ΦΛ c +

h

• Thus…

Recurrent networks

31

τnΦ

TΦ dc
dt

= −ΦTΦc + ΦTΦΛ c + ΦT

h

τn
dc
dt

= − c + Λ c +

hf

• But this is just our original network equation with a diagonal
weight matrix!

• Multiply both sides from the left by ΦT


hf = ΦT


h

τnΦ

dc
dt

= −Φc + ΦΛ c +

h

Recurrent networks

32

m21

m12

h1 h2

m11
m22


h ⋅ f̂1


h ⋅ f̂2

λ1 λ2

• We can rewrite the equation for our network as n independent
equations for n independent ‘modes’ of the network

• We can think of this transformation as making a new network with
only autapses.

• The activities of our network modes represent activity of linear
combinations of neurons in our original network

cα (t)

Recurrent networks

33

• Let’s find the steady-state solution of our system of equations…

τn
d!v
dt

= −
!v + M !v +

!
h

v = Φc

τn
dc
dt

= − c + Λ c + ΦT

h

 0 = − (I − Λ) c∞ + ΦT

h

c∞ = (I − Λ)−1ΦT


h

 Φ
c∞ = Φ(I − Λ)−1ΦT


h

v∞ = Φ(I − Λ)−1ΦT


h

τn
dc
dt

= − I c + Λ c + ΦT

h

τn
dc
dt

= − (I − Λ) c + ΦT

h

v∞ = Φ c∞

 (I − Λ) c∞ = ΦT

h

Recurrent networks

34

• The steady-state solution (with input vector) is:

v∞ =Φ(I − Λ)−1ΦT


h

this matrix has the same eigenvectors as M !


h

• So what happens if our input is parallel to one of the eigenvectors?

!v∞ = G f̂µ

!
h = f̂µ

v∞ =G


h

!v∞ = 1
1− λµ

f̂µ

• Then, in steady state, the output will be parallel to the input!

and has eigenvalues gµ = 1
1− λµ

G f̂µ = gµ f̂µ

eigenvectors?

Recurrent networks

35

• If our input vector is parallel to one of the eigenvectors, then our
steady-state output will be parallel to the input.

• In this case, our input activates only one mode of the network, and
no other mode.

• The response of the network to inputs along each of the
eigenvectors (modes) is amplified or suppressed by a gain factor

gµ = 1
1− λµ

• The time constant of the response is increased or decreased by the
same factor

τµ = τn
1− λµ

Recurrent networks

36

• Now let’s look at a case where two output neurons are connected to
each other by mutual excitation.

0.8

0.8

h1 h2

M = 0 0.8
0.8 0

⎛
⎝⎜

⎞
⎠⎟

MΦ= ΦΛ

Φ= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ= 0.8 0
0 −0.8

⎛

⎝
⎜

⎞

⎠
⎟

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

v1

v2

What is the weight matrix?

g2 = 1.8−1 g1 = 5

Recurrent networks

37

• If the input is parallel to the eigenvectors, then only one mode is
excited.

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

v1

v2

0.8

0.8

h1 h2

g2 = 1.8−1 g1 = 5

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

f̂1f̂2

h

Recurrent networks

38

• If the input is not parallel to an eigenvector, we break the input into
a component along each mode

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

v1

v2

0.8

0.8

h1 h2

v∞ = (

h ⋅ f̂1)
1− λ1

f̂1 + (

h ⋅ f̂2)
1− λ2

f̂2


h = (


h ⋅ f̂1) f̂1 + (


h ⋅ f̂2) f̂2

f̂2
f̂1

v∞

1
1− λ1

= 5

1
1− λ2

= 1
1.8

λ1 = 0.8λ2 = −0.8

Recurrent networks

39

• Two output neurons are connected to each other by mutual
excitation.

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

v1

v2

0.8

0.8

h1 h2

g2 = 1.8−1 g1 = 5

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

Recurrent networks

40

• Now let’s look at a case where two output neurons are connected to
each other by mutual inhibition.

−0.8

−0.8

h1 h2

M = 0 −0.8
−0.8 0

⎛
⎝⎜

⎞
⎠⎟

MΦ= ΦΛ

Φ= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ= −0.8 0
0 0.8

⎛

⎝
⎜

⎞

⎠
⎟

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

v1

v2

What is the weight matrix?

g2 = 5 g1 =1.8−1

Recurrent networks

41

• Two output neurons are connected to each other by mutual
inhibition.

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

v1

v2

−0.8

−0.8

h1 h2

g2 = 5 g1 =1.8−1

Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)

42

Recurrent networks

43

• We have described the case where .

What happens when ?

λ < 1
λ = 1

τn
dcα
dt

= − (1− λα)cα + f̂α ⋅

h(t)

τn
dc1
dt

= f̂1 ⋅

h(t)

c1(t) = c1(0) +
1
τn

hf 1(τ)dτ
0

t

∫
t

c1

 hf 1(t) = f̂1 ⋅

h(t)

hf 1

t
Integrator!

= hf 1(t)

0

Recurrent networks

44

• What happens when ?λ > 1

τn
dc1
dt

= − (1− λ1)c1 + f̂1 ⋅

h(t)

t

c1

 hf 1(t) = f̂1 ⋅

h(t)

hf 1

t

τn
dc1
dt

= (λ1 −1)c1 + f̂1 ⋅

h(t)

Exponential growth!

> 0

Recurrent networks

45

• The behavior of the network depends critically on λ

With zero input…
relaxation back to zero

With zero input…
persistent activity!

MEMORY!

c1

hf 1

t

Integration

λ = 1

Exponential relaxation

c1

hf 1

λ <1

t

Exponential growth

λ >1

c1

hf 1

t

Recurrent networks

46

• Networks with have memory!λ ≥1

λ1 = 2

h1

c1

h1

t

τn
dc1
dt

= (λ1 −1)c1 + hf 1(t)

τn
dc1
dt

= c1 c1(t) = 0

c1

h1

t

• With zero input, zero is an ‘unstable fixed point’ of the network

Recurrent networks

47

• Add a saturating activation function F(x)

c1

h1

t

v = F(I)

I−1

1

λ1 = 2

h1

c1

h1

t

1

Recurrent networks

48

• Saturating activation function plus eigenvalues greater
than 1 lead to stable states other than zero!

2

h1

v = F(I)

I−1

1

h1 t

t

c1

−1

1

c1

E

−1 10attractor 2 attractor 1

energy landscape

v1
−1 1

v2

Recurrent networks

49

• Two-neuron network that has two attractors

2

h1

v = F(I)

I

−2
−2

h1 h2

−2

h2

v1
−1 1

v2

Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)

50

Winner-take-all network

51

• Implements decision making

v1
−1 1

v2

−2
−2

h1 h2

1

2

Network will remain in attractor 1 if h1 > h2

Network will remain in attractor 2 if h2 > h1


h


h

Winner-take-all network

52

• Implements decision making

v1
−1 1

v2

1

2

Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)

53

Recurrent networks

54

• Networks with many attractors…

2

h1

0.5

h2

2

h1

2

h2

v1
−1 1

v2

v1
−1 1

v2

−1

1

Hopfield networks

55

• Networks with many attractors…

2

h3

2

h1

2

h2v3

v2

v1

2n possible states !

MIT OpenCourseWare
https://ocw.mit.edu/

9.40 Introduction to Neural Computation
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

