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• We have been considering neural networks that use firing 
rates, rather than spike trains. (‘rate model’)
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• Synaptic input is the firing rate of the input neuron times a 
synaptic weight w. 

Is = wu

v = F Is[ ] = F wu[ ]

• The output firing rate is some non-linear function 
of the synaptic input. 

I

F(I )

θ

binary threshold neuron

Feed-forward neural networks
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linear neuron v = wu
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v =W u

Feed-forward network
• Implements an arbitrary matrix transformation

1 2 3 4

1 2 3 4
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!u



• Today we will consider the case where there are also connections 
between different neurons in the output layer

Recurrent networks
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1 2 3a	=  
v

1 2 3 4
b		=

• Develop an intuition for how 
recurrent networks respond to 
their inputs

• Examine computations 
performed by recurrent 
networks (amplifier, integrator, 
sequence generation, short 
term memory 

• Use all the powerful linear algebra tools we have 
developed!



Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse networks

• Dynamics in fully recurrent networks 

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)
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Time dependence
• The steady state firing rate of our output neuron looks like this…

v∞ = F Is[ ] =F wu[ ]
• But neurons don’t respond instantaneously to current inputs

Membrane time constant

Dendritic propagation
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Synaptic delays

input spike

Î syn (t)
post-synaptic current

u

v

input neuron

output neuron

w



Time dependence
• We model the firing rate of our model neuron as follows:

τn
dv
dt

= − v + F wu(t)[ ]
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u(t)

v(t)

step_of_firing_rate.m

u

v

input neuron

output neuron

w

τn
dv
dt

= − v + v∞

• We will look at how networks respond to changes in their 
inputs v∞(t) = F wu(t)[ ]



• We can incorporate time-dependence into our general feed-
forward network…
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τn
dv
dt

= − v + F W u⎡⎣ ⎤⎦

Time dependence

 
v∞ = F W u⎡⎣ ⎤⎦

 
τn
dv
dt

= − v + v∞  
u1 2 3 4

1 2 3a	=  
v

Feed-forward	weight	matrix Wab

• The time dependence is really boring in a feedforward
network, but it is extremely important in RNNs.



• We will now consider the case where there are connections 
between different neurons in the output layer

Recurrent networks
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Recurrent	weight	matrix Maa '

 
τn
dv
dt

= − v + F W u +M v⎡⎣ ⎤⎦ to	a from	a’

• Two	kinds	of	input

Feed-forward	input

 W
u

Recurrent	input

 M
v

Feed-forward	weight	matrix Wab

 
u1 2 3 4

1 2 3a	=  
v



 

W u =
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w21 w22 w23 w24
w31 w32 w33 w34
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⎢
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⎢
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• We will now consider the case where there are connections 
between different neurons in the output layer

Recurrent networks
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Recurrent	weight	matrix Maa '

 
τn
dv
dt

= − v + F W u +M v⎡⎣ ⎤⎦

 

M v =
m11 m12 m13
m21 m22 m23
m31 m32 m33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

v1
v2
v3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Feed-forward	weight	matrix Wab

to	a from	a’

Feed-forward	input

Recurrent	input

 
u1 2 3 4

1 2 3a	=  
v



• We will simplify this equation to focus on the recurrent network

Recurrent networks

12

1 2 3

Maa '

 
τn
dv
dt

= − v + F

h +M v⎡⎣ ⎤⎦

 

h =W u

• Rather than writing the input as a vector of input firing rates, 
write a vector of effective inputs to each output neuron.

1 2 3

 
v



• We will start by analyzing the case with linear neurons

Recurrent networks
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τn
dv
dt

= − v + F

h +M v⎡⎣ ⎤⎦

 F(
x) = x

• For linear neurons

 
τn
dv
dt

= − v + M v +

h

Thus…

This is a system of coupled 
equations!

1 2 3

Maa '

1 2 3

 
v

 

h



Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks 

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)
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• Consider the case that M is a diagonal matrix

Recurrent networks
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1 2 3

1 2 3a =

Autapse

 

M =

λ1
λ2

λ3


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟0

0

λ1 λ2 λ3

 

h



• Note that if M is a diagonal matrix

Recurrent networks
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
h

 

M = Λ =

λ1
λ2

λ3
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟0

0 1 2 3

1 2 3a = λ1 λ2 λ3

 
τn
d!v
dt

= −
!v +Λ !v +

!
h

τn
dva
dt

= − va + λava + ha
We have n independent equations –
each neuron acts independently of all 
the others



• There are three cases to consider

Recurrent networks
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ha

λa

τn
dva
dt

= − 1− λa( )va + ha

τn
1− λa

dva
dt

= − va +
ha

1− λa

τa
dva
dt

= − va + va,∞

> 0 = 0 < 0
λa < 1• Start with the case that:

τn
dva
dt

= − va + λava + ha

• Rewrite our equation:

va (t) = va,∞ + (v0 − va,∞ )e
− t /τa

A solution we’ve seen before!

Exponential relaxation



Recurrent networks
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• Positive (excitatory) feedback acts to amplify the steady state activity 
of each neuron by an amount that depends on the strength of the 
feedback!

3ha
2ha
ha

va,∞ = ha
1− λa

va (t)

t

• Positive feedback amplifies the response and slows the time-
constant of the response

ha

λa

τn 2τn 3τn

λ = 0.66

λ = 0.5

λ = 0

τa =
τn
1− λa

t
ha

0 < λa < 1



Recurrent networks
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• Negative (inhibitory) feedback acts to suppress the steady state 
activity of a neuron by an amount that depends on the strength of 
the feedback.

ha

ha / 2
ha / 3

va (t)

t

• Negative feedback suppresses the response and speeds the time-
constant of the response

λ = 0
λ = −1

λ = −2

τnτn
2

λa < 0

ha

τn
3

va,∞ = ha
1− λa

τa =
τn
1− λa

t
ha

λa < 0



Recurrent networks
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• If           , the activity always relaxes back to zero when the 
input is removed.            

λa <1

ha

λ < 1

va (t)

ha
t

time



h1

h2 Input

Recurrent networks

21

• How do we represent the response of a network of neurons.

State-space trajectories

v1

v2 Output

• Cool computations
– Amplifier
– Integrator
– Memory
– Sequence generator



State-space trajectories
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h1

0.7

h2

−0.7



Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks 

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)
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Recurrent networks

24

• Now let’s look at the more general case of recurrent connectivity.

M = m11 m12
m21 m22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m21

m12

h1 h2

m11
m22



Recurrent networks
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• We saw how the behavior of a recurrent network is extremely 
simple to describe if M is diagonal. 

• So let’s make M diagonal!

M = ΦΛΦT

Rewrite M as follows

where        is a diagonal matrix. Λ

m21

m12

h1 h2

m11
m22

hf 1 hf 2

λ1 λ2



Recurrent networks
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MΦ = ΦΛ• Solve the eigenvalue equation

 

Λ=

λ1
λ2

λ3


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟0

0o The diagonal elements of        are the 
eigenvalues of 

Λ
M

o The columns of         are the eigenvectors ofΦ M

 
Φ = f̂1 f̂2 f̂3  f̂n⎡

⎣
⎤
⎦

M f̂α = λα f̂α
• Remember that…

• How do we write M as               ?ΦΛΦT



Recurrent networks
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M f̂µ = λµ f̂µ

• If M is a symmetric matrix, then …

f̂i ⋅ f̂j = δij

MΦ = ΦΛ

o the eigenvalues are real

o is a rotation matrix. The eigenvectors give us an 
orthogonal basis set:
Φ

ΦTΦ = I



Recurrent networks
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f̂1

f̂2

• Now we are going to write our vector of output firing rates       
in this new basis. 

 
v

 cα = v ⋅ f̂α

 
v = c1 f̂1 + c2 f̂2 + c2 f̂3 + ...

• Express       as a linear combination of basis vectors  
v

 c1 =
v ⋅ f̂1

Project        onto each of the new basis vectors. 
v

 
v



Recurrent networks
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c = ΦT v

 
!v(t) = c1(t) f̂1 + c2 (t) f̂2 + c3(t) f̂3 + ...

• Of course       is a function of time, so we have to write… 
v

 cα (t) =
v(t) ⋅ f̂α

 

v(t) = ci (t) f̂i
i=1

n

∑
or

where

 
v = Φ c

• In matrix notation, we write this change-of-basis as



Recurrent networks

30

 
v = Φ c

 
τn
dv
dt

= − v + M v +

h

 
τnΦ

dc
dt

= −Φc + MΦ c +

h

MΦ = ΦΛ

• But we have chosen a basis set        such thatΦ

• Let’s rewrite our network equation in this new basis set…

 
τnΦ

dc
dt

= −Φc + ΦΛ c +

h

• Thus…



Recurrent networks
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τnΦ

TΦ dc
dt

= −ΦTΦc + ΦTΦΛ c + ΦT

h

 
τn
dc
dt

= − c + Λ c +

hf

• But this is just our original network equation with a diagonal 
weight matrix!

• Multiply both sides from the left by      ΦT

 

hf = ΦT


h

 
τnΦ

dc
dt

= −Φc + ΦΛ c +

h



Recurrent networks
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m21

m12

h1 h2

m11
m22

 

h ⋅ f̂1  


h ⋅ f̂2

λ1 λ2

• We can rewrite the equation for our network as n independent 
equations for n independent ‘modes’ of the network

• We can think of this transformation as making a new network with 
only autapses. 

• The activities              of our network modes represent activity of linear 
combinations of neurons in our original network

cα (t)



Recurrent networks
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• Let’s find the steady-state solution of our system of equations…

 
τn
d!v
dt

= −
!v + M !v +

!
h

 
v = Φc

 
τn
dc
dt

= − c + Λ c + ΦT

h

 0 = − (I − Λ) c∞ + ΦT

h

 
c∞ = (I − Λ)−1ΦT


h

 Φ
c∞ = Φ(I − Λ)−1ΦT


h

 
v∞ = Φ(I − Λ)−1ΦT


h

 
τn
dc
dt

= − I c + Λ c + ΦT

h

 
τn
dc
dt

= − (I − Λ) c + ΦT

h

 
v∞ = Φ c∞

 (I − Λ) c∞ = ΦT

h



Recurrent networks
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• The steady-state solution (with input vector       ) is:

 
v∞ =Φ(I − Λ)−1ΦT


h

this matrix has the same eigenvectors as M !

 

h

• So what happens if our input is parallel to one of the eigenvectors?

   
!v∞ = G f̂µ   

!
h = f̂µ

 
v∞ =G


h

   

!v∞ = 1
1− λµ

f̂µ

• Then, in steady state, the output will be parallel to the input! 

and has eigenvalues gµ = 1
1− λµ

G f̂µ = gµ f̂µ

eigenvectors?



Recurrent networks
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• If our input vector is parallel to one of the eigenvectors, then our 
steady-state output will be parallel to the input.

• In this case, our input activates only one mode of the network, and 
no other mode.

• The response of the network to inputs along each of the 
eigenvectors (modes) is amplified or suppressed by a gain factor

gµ = 1
1− λµ

• The time constant of the response is increased or decreased by the 
same factor

τµ = τn
1− λµ



Recurrent networks
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• Now let’s look at a case where two output neurons are connected to 
each other by mutual excitation.

0.8

0.8

h1 h2

M = 0 0.8
0.8 0

⎛
⎝⎜

⎞
⎠⎟

MΦ= ΦΛ

Φ= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ= 0.8 0
0 −0.8

⎛

⎝
⎜

⎞

⎠
⎟

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

v1

v2

What is the weight matrix?

g2 = 1.8−1 g1 = 5



Recurrent networks
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• If the input is parallel to the eigenvectors, then only one mode is 
excited.

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

v1

v2

0.8

0.8

h1 h2

g2 = 1.8−1 g1 = 5

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟



f̂1f̂2  

h

Recurrent networks
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• If the input is not parallel to an eigenvector, we break the input into 
a component along each mode

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

v1

v2

0.8

0.8

h1 h2

 

v∞ = (

h ⋅ f̂1)
1− λ1

f̂1 + (

h ⋅ f̂2 )
1− λ2

f̂2

 


h = (


h ⋅ f̂1) f̂1 + (


h ⋅ f̂2 ) f̂2

f̂2
f̂1

 
v∞

1
1− λ1

= 5

1
1− λ2

= 1
1.8

λ1 = 0.8λ2 = −0.8
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• Two output neurons are connected to each other by mutual 
excitation.

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

v1

v2

0.8

0.8

h1 h2

g2 = 1.8−1 g1 = 5

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟
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• Now let’s look at a case where two output neurons are connected to 
each other by mutual inhibition.

−0.8

−0.8

h1 h2

M = 0 −0.8
−0.8 0

⎛
⎝⎜

⎞
⎠⎟

MΦ= ΦΛ

Φ= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ= −0.8 0
0 0.8

⎛

⎝
⎜

⎞

⎠
⎟

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

v1

v2

What is the weight matrix?

g2 = 5 g1 =1.8−1
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• Two output neurons are connected to each other by mutual 
inhibition.

f̂1 =
1
2
1
1
⎛
⎝⎜
⎞
⎠⎟

f̂2 =
1
2

−1
1

⎛

⎝
⎜

⎞

⎠
⎟

v1

v2

−0.8

−0.8

h1 h2

g2 = 5 g1 =1.8−1



Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks 

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)
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Recurrent networks
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• We have described the case where          . 

What happens when ?

λ < 1
λ = 1

 
τn
dcα
dt

= − (1− λα )cα + f̂α ⋅

h(t)

 
τn
dc1
dt

= f̂1 ⋅

h(t)

c1(t) = c1(0) +
1
τn

hf 1(τ )dτ
0

t

∫
t

c1

 hf 1(t) = f̂1 ⋅

h(t)

hf 1

t
Integrator!

= hf 1(t)

0



Recurrent networks
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• What happens when ?λ > 1

 
τn
dc1
dt

= − (1− λ1)c1 + f̂1 ⋅

h(t)

t

c1

 hf 1(t) = f̂1 ⋅

h(t)

hf 1

t

 
τn
dc1
dt

= (λ1 −1)c1 + f̂1 ⋅

h(t)

Exponential growth!

> 0



Recurrent networks
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• The behavior of the network depends critically on λ

With zero input… 
relaxation back to zero

With zero input… 
persistent activity!

MEMORY!

c1

hf 1

t

Integration

λ = 1

Exponential relaxation

c1

hf 1

λ <1

t

Exponential growth

λ >1

c1

hf 1

t



Recurrent networks
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• Networks with             have memory!λ ≥1

λ1 = 2

h1

c1

h1

t

τn
dc1
dt

= (λ1 −1)c1 + hf 1(t)

τn
dc1
dt

= c1 c1(t) = 0

c1

h1

t

• With zero input, zero is an ‘unstable fixed point’ of the network



Recurrent networks
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• Add a saturating activation function F(x)

c1

h1

t

v = F(I )

I−1

1

λ1 = 2

h1

c1

h1

t

1



Recurrent networks
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• Saturating activation function plus eigenvalues greater 
than 1 lead to stable states other than zero!  

2

h1

v = F(I )

I−1

1

h1 t

t

c1

−1

1

c1

E

−1 10attractor 2 attractor 1

energy landscape



v1
−1 1

v2

Recurrent networks
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• Two-neuron network that has two attractors

2

h1

v = F(I )

I

−2
−2

h1 h2

−2

h2

v1
−1 1

v2



Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks 

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)
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Winner-take-all network

51

• Implements decision making

v1
−1 1

v2

−2
−2

h1 h2

1

2

Network will remain in attractor 1 if h1 > h2

Network will remain in attractor 2 if h2 > h1

 

h

 

h



Winner-take-all network
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• Implements decision making

v1
−1 1

v2

1

2



Learning Objectives for Lecture 18

• Mathematical description of recurrent networks

• Dynamics in simple autapse network

• Dynamics in fully recurrent networks 

• Recurrent networks for storing memories

• Recurrent networks for decision making (winner-take-all)
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Recurrent networks
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• Networks with many attractors…

2

h1

0.5

h2

2

h1

2

h2

v1
−1 1

v2

v1
−1 1

v2

−1

1



Hopfield networks
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• Networks with many attractors…

2

h3

2

h1

2

h2v3

v2

v1

2n possible states !
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