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Learning Objectives for Lecture 16

* More on two-layer feed-forward networks



Two-layer feed-forward network

« We can expand our set of output neurons to make a more
general network...

input firing rates b= 1 2 3 4
[ul,uz,u3,...unb]:b7 O
Lots of synaptic weights! VVab
OO OO
output firing rates a = 1 2 3 4

[vl,vz,v3,... v, ] =y



Two-layer feed-forward network

*  We now have a weight from each of our input neurons onto each of our
output neurons!

*  We write the weights as a matrix.

weight matrix

VVab:

a b
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Two-layer feed-forward network

* We can write down the firing rates of our output neurons as a matrix

multiplication.
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Dot product interpretation of matrix multiplication



Two-layer feed-forward network

* There is another way to think about what the weight matrix means...
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Two-layer feed-forward network

« There is another way to think about what the weight matrix means...
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«  What is the output if only input neuron 1 is active?
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Two-layer feed-forward network
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The output pattern is a linear combination of contributions from each
of the input neurons! 10



Examples of sitmple networks

* Each input neuron connects to one neuron in the output layer,

with a weight of one.
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Examples of sitmple networks

Each input neuron connects to one neuron in the output layer,
with an arbitrary weight
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Examples of sitmple networks

Input neurons connect to output neurons with a weight matrix
that corresponds to a rotation matrix.
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Examples of sitmple networks

* Let's look at an example rotation matrix (p=-45°)
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Examples of sitmple networks

* Rotation matrices can be very useful when different directions in
feature space carry different useful information
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Examples of sitmple networks

Rotation matrices can be very useful when different directions in
feature space carry different useful information
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Learning Objectives for Lecture 16

« Matrix transformations (rotated transformations)



Matrix transformations

« In general A maps the set of vectors in [R? onto another set of vectors

in R?.
y = A3

A




Matrix transformations

« In general A maps the set of vectors in [R? onto another set of vectors

in R?.
y= A%
A
| >
< |
A—l



Matrix transformations y = AX

» Perturbations from the identity matrix

A= 1+6 O A 1+ O (10 A=(1+5 0 j
0 1+0 0 1 0 146 0 1-8
1o o These are all diagonal matrices
A:[ 0 1] =£ 0 _1]

o))



Rotation matrix

 Rotation in 2 dimensions D(0) = C989 —sin6
sin@ cos6
6=10° O =25° 6 =45° 6 =90°

Does a rotation matrix have an inverse? det(®) =1

* The inverse of a rotation matrix is just its transpose

O'(0)=D(-0) = D' ()



Rotated transformations

* Let’s construct a matrix that produces a stretch along a 45° angle...
O cos45 —sin45 _ 11—
“| sind5  cos45 V2 1 1

@' A d

=

\+45"

«  We do each of these steps by multiplying our matrices together

dAD X
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Rotated transformations

Let's construct a matrix that produces a stretch along a 45° angle...

X O AD' X% OAD' X



Inverse of matrix products

We can unto our transformation by taking the inverse
-1
| ®AD" |

How do you take the inverse of a sequence of matrix multiplications
A*B*C?
el e [ABC]'ABC=C'B"'A"'ABC
|ABC|'=C"'B'A

=C"'B"'BC

Thus... =C"'C

[or0’ ] =[@" T [A]'[@]”

[DAD" ] = DA A= (



Rotated transformations

Let's construct a matrix that undoes a stretch along a 45° angle...

O AN'D ¥ OA'D' X

=

vig A D(+45°)
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Rotated transformations

« Construct a matrix that does compression along a -45° angle...

P’ A d

vig A D(—45°)
_ - (02 0 IR
2011 _[ 0 1} 24
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Transformations that can’t be undone

e Some transformation matrices have no inverse...

X o' x AD' X PAD' X
®" = P(45°) A d(—45°)
_if1 (0 o _1f 1
211 _[0 1} 24
r _| 05 05
PAD —[ 05 05 ] det(@A®’)=0  det(A)=0



Learning Objectives for Lecture 16

 Basis sets



Basics of basis sets

We can think of vectors as abstract ‘directions’ in space. But in order to
specify the elements of a vector, we need to choose a coordinate
system.

To do this, we write our vector as a linear combination of a set of
special vectors called the 'basis set.’

X 1 0 0
vV = |y = xl0|+yl1]|+ 20 = xe + ye, + ze,
Z 0 0 1

The numbers x, y, z are called the coordinates of the vector.

The vectors {e1 6 s 63} are called the 'basis vectors’, in this
case, in three dimensions.



Basics of basis sets

In order to describe an arbitrary vector in the space of real numbers in n

dimensions ( [R"), our basis vectors need to have n numbers.

In order to describe an arbitrary vector in [R” , we need to have n basis

vectors.

The basis set we wrote down earlier {¢,e,, e} is called the ‘standard

basis’. Each vector has one element that's a one and the rest are zeros.
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Orthonormal basis

In addition, the standard basis has the interesting property that

each vector is a unit vector

e-e =1

1 l

Each vector is orthogonal to all the other vectors

e-e =0 e-e, =0 e-¢ =0 éi'éjzo’ L# ]

These properties can be written compactly as

6.6 =6 5= V=)
R Pl o ifiz]

Any basis set with these properties is called ‘orthonormal’.



Basics of basis sets

« The standard basis is not the only orthonormal basis

Consider a different set of orthogonal unit vectors: {]71 , ]?2 }

« The vector coordinates are given by the dot products of the vectory

with each of the basis vectors.



Non-orthonormal basis sets

* Vectors can also be written as a linear combination of (almost) any
vectors, not just orthonormal basis vectors

v=q fi+¢f,




Basics of basis sets

Let's decompose an arbitrary vector v in a basis set {fl : ]72}

v=qgf +qlf,

The coefficients ¢, and ¢, are called ‘coordinates of the vector v in

the bas{sf1 , ]72}

- C M 1 M I -
The vector vf :[ 1} is called the ‘coordinate vector’ of
G

in the basis {]_E1 , ]_52 2



Basics of basis sets

* Let’s look at an example. Consider the basis

an-{()3)

and the vector 3 (3] in the standard basis.

5

e Find the vector coordinates of y in the new basis.

 Write y as a linear combination of the new basis vectors:

¢fi+cf, =V -
LSy > /> system of equations

1 ‘e 21 (3 ¢—2¢=3
“ 3 21 ] |5 3¢, +¢, =5



Basics of basis sets

* We can write this system of equations in matrix notation:

¢—2¢=3

3¢, +¢, =5 va:V

* Now solve for \7f by multiplying both sides of the equation by the
inverse of matrix F .



Basics of basis sets

e We can find the inverse of F :

~ - 1 1 2
v, =F7% ==
/ 7( -3 1](
1 3+10) _1f 13
7\ -9+5 T\ -4

 Thus, we find the coordinate vector of v in basis {j?1 , ]?2}

. 13/77
v, =
—4/7



Basics of basis sets

In summary: to find the coordinate vector for v in the basis { f., f,} , we
construct a matrix F whose columns are just the elements of the basis

vectors.

such that v = F{}f

We can solve for v, by multiplying both sides of the equation by
the inverse of matrix F

\_}f —F 'y ‘change of basis’

But this only works if F has an inverse!



Learning Objectives for Lecture 16

« Linear independence



Subspaces

We need n vectors in R” to form a basis in R". But not any set
of n vectors will do the trick!
Consider the following set of vectors

_ 1
hi= 1
0

Note that any linear combination of {f., f,, f;} will always lie in
the (x , y) plane
_ R . C1+C3
v=q¢fitohtaf = Gt
0

Thus, the set of vectors {fl , fz : ﬁ} doesn’t span all of R’

It only spans the x-y plane - a subspace of R’



Linear independence

el o

Note that we can write any of these vectors as a linear

SO
O = O
O = =

combination of the other two.

—_ —_ —_

L=h+1 L=f-1 h=5L-1
Thus, this set of vectors is called ‘linearly dependent’.

Any set of n linearly dependent vectors cannot form a basis in R”

How do you know if a set of vectors is linearly dependent?

F=( 7| 7.

]fn) det(F) =0



Linear dependence

* If det(F)=0 then F maps v, into a subspace of R”

F \ F:( 0.5 05 j
—) N\ 0.5 0.5

* If F maps onto a subspace, then the mapping is not reversible!

det(F)=0



Geometric interpretation of determinant

The determinant is the ‘volume’ of a unit cube after transformation (area
of unit square in two dimensions).

det(A)=0.5

A pure rotation matrix has a determinant of one.

43



Learning Objectives for Lecture 16

« Change of basis



Change of basis

{f. 68} F=(F]A]-

7)

« If det(F)#0 then the vectors {flfzfn}
o are linearly independent

o form a complete basis set in R”

« Then the matrix F implements a ‘change of basis’

From standard basis to f Or from f to standard basis
— 1 — — —
v,=F"v v=F v,



Change of basis

« The change of basis is easy if {]71 : ]72 lis an orthonormal basis. ..

Thus...



Change of basis

With an orthonormal basis set, the coordinates are just given by the dot

product with the basis vectors !

. — f, —
F=1/54h 5 F=F .
_fz_

7~ N\
|
S
|
N———
<!
|
<!
=



Change of basis

In two dimensions, there is a family of orthonormal basis sets

: cosf@  sinf
A cos6 ~ sin@ F =
f = —sinf  cos@

' | —sin@ > | cosO

The vector coordinates are given by the dot products of the vectory

with each of the rotated basis vectors.



Seeing 1n high dimensions
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Learning Objectives for Lecture 16

More on two-layer feed-forward networks
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