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Learning Objectives for Lecture 16 

• More on two-layer feed-forward networks 

• Matrix transformations (rotated transformations) 

• Basis sets 

• Linear independence 

• Change of basis 
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Two-layer feed-forward network 
• We can expand our set of output neurons to make a more 

general network… 

input firing rates b		= 1 2 3 4 
 ⎡⎣u1 , u2 , u3 ,... unb 

⎤⎦ = u 

Lots 	of 	synaptic 	weights! Wab 

output firing	 rates a	 = 1 2 3 4 
 ⎡⎣v1 , v2 , v3 ,... vna 

⎤⎦ = v 

5 



	

               
 

      

	

	

 
				
								

Two-layer feed-forward network 
• We now have a weight from each of our input neurons onto each of our 

output neurons! 
b		= 1 2 3 

• We write the weights as a matrix. 

a	 = 1 2 3 
b		= 1 2 3 

wa 
wa 

⎡ ⎤ ⎡ ⎤ a	 = w11 w12 w13 

w21 w22 w23 

w31 w32 w33 

=1 weight matrix 1 ⎢
⎢
⎢ 

⎥
⎥
⎥ 

⎢
⎢
⎢ 
⎣ 

⎥
⎥
⎥ 

Wab = = 2 =2 
wa 

3 =3 ⎣ ⎦ ⎦ 
a	 b 

row column 
post 					pre 
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Two-layer feed-forward network 
• We can write down the firing rates of our output neurons as a matrix 

multiplication. 
b		= 1 2 3 v = W u va = ∑Wabub 

b 

a	 = 1 2 3 

=1 ⋅ 

=2 ⋅ 

=3 ⋅ 

u1 

u2 

u3 

w11 w12 w13 

w21 w22 w23 

w31 w32 w33 

v1 

v2 

v3 

v = 

⎤ 
⎥
⎥
⎥ 
⎦ 

u 
u 

wa 

u 
wa 
wa 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ 
⎢
⎢
⎢ 

= 
⎥
⎥
⎥ 

⎢
⎢
⎢ 

⎥
⎥
⎥ 

⎢
⎢
⎢ 

⎣ ⎦ ⎣ ⎦ ⎣ 

= 
⎥
⎥
⎥ 

⎢
⎢
⎢ 

⎦ ⎣ 

• Dot product interpretation of matrix multiplication 
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Two-layer feed-forward network 
• There is another way to think about what the weight matrix means… 

b	 = 1 2 3 
b		= 1 2 3 

⎡ ⎡ ⎤ ⎤ w11 w12 w13 

w21 w22 w23 

w31 w32 w33 

u1 

u2 

v = W u = 
⎢
⎢
⎢ 

⎢
⎢
⎢ 

⎥
⎥
⎥ 

⎥
⎥
⎥ u3 a	 = 1 2 3 ⎣ ⎣ ⎦ ⎦ 

(1) w (2) 
w (3) 1 0 1 ⎡ ⎤⎦ ⎢ 

⎢ 
⎢⎣ 

W = 1 1 1 
0 0 

⎤ 
⎥ 
⎥ 
⎥⎦ 

⎡⎣ 

vector of weights from vector of weights from 
input neuron 1 input neuron 3 

vector of weights from 

w 

input neuron 2 

1 
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Two-layer feed-forward network 
• There is another way to think about what the weight matrix means… 

b	 = 1 2 3 

⎡ ⎡ ⎤ ⎤ w11 w12 w13 

w21 w22 w23 

w31 w32 w33 

u1 

u2 

b		= 1 2 3 v = W u = 
⎢
⎢
⎢ 

⎢
⎢
⎢ 

⎥
⎥
⎥ 

⎥
⎥
⎥ 

1 2 3 

u3 ⎣ ⎣ ⎦ ⎦ 
w (1) 

w (2) 
w (3) ⎡⎣ a	 = ⎤⎦ 

• What is the output if only input neuron 1 is active? 

 
⎡ 
⎢
⎢
⎢ 

w11 w12 w13 

w21 w22 w23 

w31 w32 w33 

⎤ 
⎥
⎥
⎥ 

⎡ 
⎢ 
⎢ 
⎢⎣ 

u1 
⎤ 
⎥ 
⎥ 
⎥⎦ 

⎡ 
⎢
⎢
⎢ 

w11 
⎤ 
⎥
⎥
⎥ 

w (1) = u1 
= u1 0 = u1 w21 = 

0 w31 ⎣ ⎦ ⎣ ⎦ 

⎤

⎦ 

1
1
0 

⎡ 
⎢ 
⎢ 
⎢⎣ 

⎥
⎥
⎥ 

v 
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Two-layer feed-forward network 
b	 = 1 2 3 

⎡ ⎡ ⎤ ⎤ w11 w12 w13 

w21 w22 w23 

w31 w32 w33 

u1 

u2 

v = W u 
⎢
⎢
⎢ 

⎢
⎢
⎢ 

⎥
⎥
⎥ 

⎥
⎥
⎥ 

= b		= 1 2 3 

⎤⎦ 
a	 = 1 2 3 

u3 ⎣ ⎣ ⎦ ⎦ 
w (1) 

w (2) 
w (3) ⎡⎣ 

⎡ ⎡ ⎤ ⎡ ⎤ ⎤ w11 

w21 

w12 

w22 

w13 

w23 

w33 

v = u1 

⎢
⎢
⎢ 

⎥
⎥
⎥ 

⎢
⎢
⎢ 

⎥
⎥
⎥ 

+ u3 

⎢
⎢
⎢ 
⎣ ⎦ 

⎥
⎥
⎥ 
⎦ 

+ u2 1 0 1 
1 1 1 
0 0 1 

⎡ 
⎢ 
⎢ 
⎢⎣ 

w31 w32 W = ⎣ ⎦ ⎣ 

 (2) w 

⎤ 
⎥ 
⎥ 
⎥⎦  w(1) w(3) v 

The output pattern is a linear combination of contributions from each 
of the input neurons! 

  u1 + u2 + u3 = 

10 



Examples of simple networks
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• Each input neuron connects to one neuron in the output layer, 
with a weight of one.

W = IW =
1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 
v = u

 
v = W u =

u1
u2
u3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 3 
u

 
v 1 1 1

=
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

u1
u2
u3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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• Each input neuron connects to one neuron in the output layer, 
with an arbitrary weight

1 2 3

W = Λ Λ =

λ1 0 0

0 λ2 0

0 0 λ3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

λ1 0 0

0 λ2 0

0 0 λ3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

u1
u2
u3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
u

 
v

=

λ1u1
λ2u2
λ3u3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

λ1 λ2 λ3

 
v = Λ u

Examples of simple networks
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• Input neurons connect to output neurons with a weight matrix 
that corresponds to a rotation matrix.

=
cosφ −sinφ
sinφ cosφ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u1
u2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

u1 cosφ − u2 sinφ
u1 sinφ + u2 cosφ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 

v = Φ⋅ u

W =Φ Φ =
cosφ −sinφ
sinφ cosφ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

cosφ cosφ
−sinφ

sinφ

Examples of simple networks
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• Let’s look at an example rotation matrix (ϕ=-45°)

1 2

Φ(−450) =
cos(− π

4
) −sin(− π

4
)

sin(− π
4
) cos(− π

4
)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
2

=

1
2

1
2

− 1
2

1
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
1
2

1
2

− 1
2

1
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 
v = Φ⋅ u

u1
u2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

v = 1
2

u2 + u1
u2 − u1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

1
2

− 1
2

u1

u2

v1

v2

Examples of simple networks
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• Rotation matrices can be very useful when different directions in 
feature space carry different useful information

1 2

1
2 1

2

1
2

− 1
2

Examples of simple networks

cats

doggy
breath

furry

dogs

u1

u2 cats

dogs

v1

v2

Φ(−450)= 1
2

1 1
−1 1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Φ
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• Rotation matrices can be very useful when different directions in 
feature space carry different useful information

Examples of simple networks

I(λ2 )

I(λ1 )

 

v = 1
2

u2 + u1
u2 − u1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

color

brightness

AR

AL

elevation

loudness

Φ

v1

v2

Φ

v1

v2



Learning Objectives for Lecture 16

• More on two-layer feed-forward networks

• Matrix transformations (rotated transformations)

• Basis sets

• Linear independence

• Change of basis
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Matrix transformations

18

• In general A maps the set of vectors in         onto another set of vectors 

in        . 
 R2

 R2

A

 
y = Ax



Matrix transformations
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y = Ax

A−1

 
x = A−1y

A

• In general A maps the set of vectors in         onto another set of vectors 

in        . 
 R2

 R2



Matrix transformations
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• Perturbations from the identity matrix
 
y = Ax

A = 1+δ 0
0 1+δ

⎛

⎝⎜
⎞

⎠⎟
A = 1+δ 0

0 1
⎛
⎝⎜

⎞
⎠⎟

A = 1 0
0 1+δ

⎛
⎝⎜

⎞
⎠⎟

A = 1+δ 0
0 1−δ

⎛

⎝⎜
⎞

⎠⎟

A =
−1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟ A =

−1 0
0 −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Λ = a 0
0 b

⎛
⎝⎜

⎞
⎠⎟

These are all diagonal matrices

Λ−1 =
a−1 0

0 b−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟



Rotation matrix

21

Φ(θ ) = cosθ −sinθ
sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟

θ = 90oθ = 45oθ = 25oθ = 10o

Φ−1(θ ) = Φ(−θ )

• The inverse of a rotation matrix

• Rotation in 2 dimensions

= ΦT (θ )

is just its transpose    

• Does a rotation matrix have an inverse? det(Φ) =1
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• Let’s construct a matrix that produces a stretch along a 45° angle…

 
x

Rotated transformations

= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟Φ =

cos45 −sin 45
sin45 cos45

⎛

⎝
⎜

⎞

⎠
⎟

• We do each of these steps by multiplying our matrices together

 Φ
T xΦ Λ

Λ

+45o

ΦT

−45o
Φ
+45o
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• Let’s construct a matrix that produces a stretch along a 45° angle…

 Φ
T x 

x  ΛΦ
T x  ΦΛΦ

T x

ΦT

= 1
2

1 1
−1 1

⎛

⎝
⎜

⎞

⎠
⎟

Φ

= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ

= 2 0
0 1

⎛
⎝⎜

⎞
⎠⎟

ΦΛΦT = 1
2

3 1
1 3

⎛
⎝⎜

⎞
⎠⎟

Rotated transformations



Inverse of matrix products
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• We can unto our transformation by taking the inverse

ABC[ ] −1= C −1B−1A−1

• How do you take the inverse of a sequence of matrix multiplications 
A*B*C?

ABC[ ] −1ABC = C −1B−1A−1ABC

= C −1B−1BC

= C −1C

= I

ΦΛΦT⎡⎣ ⎤⎦
−1

• Thus…

ΦΛΦT⎡⎣ ⎤⎦
−1
= ΦT⎡⎣ ⎤⎦

−1
Λ[ ]−1 Φ[ ]−1

ΦΛΦT⎡⎣ ⎤⎦
−1
= ΦΛ−1ΦT Λ−1 = 2 0

0 1
⎛
⎝⎜

⎞
⎠⎟

−1

= 1/ 2 0
0 1

⎛
⎝⎜

⎞
⎠⎟
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• Let’s construct a matrix that undoes a stretch along a 45° angle…

 Φ
T x 

x  Λ
−1ΦT x  ΦΛ

−1ΦT x

ΦT

= 1
2

1 1
−1 1

⎛

⎝
⎜

⎞

⎠
⎟

Φ(+45o )

= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ−1

= 1/ 2 0
0 1

⎛
⎝⎜

⎞
⎠⎟

ΦΛ−1ΦT = 1
4

3 −1
−1 3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Rotated transformations
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• Construct a matrix that does compression along a -45° angle…

Φ(−45o )

= 1
2

1 1
−1 1

⎛

⎝
⎜

⎞

⎠
⎟

ΦT

= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ

= 0.2 0
0 1

⎛
⎝⎜

⎞
⎠⎟

ΦΛΦT = 0.6 0.4
0.4 0.4

⎛
⎝⎜

⎞
⎠⎟

Rotated transformations

−45o

Λ Φ
−45o+45o

ΦT
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• Some transformation matrices have no inverse…

 Φ
T x 

x  ΛΦ
T x  ΦΛΦ

T x

ΦT = Φ(45o ) Λ Φ(−45o )

= 1
2

1 1
−1 1

⎛

⎝
⎜

⎞

⎠
⎟= 1

2
1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟ = 0 0

0 1
⎛
⎝⎜

⎞
⎠⎟

ΦΛΦT = 0.5 0.5
0.5 0.5

⎛
⎝⎜

⎞
⎠⎟ det ΦΛΦT( ) = 0 det Λ( ) = 0

Transformations that can’t be undone



Learning Objectives for Lecture 16

• More on two-layer feed-forward networks

• Matrix transformations (rotated transformations)

• Basis sets

• Linear independence

• Change of basis
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• We can think of vectors as abstract ‘directions’ in space. But in order to 
specify the elements of a vector, we need to choose a coordinate 
system.

Basics of basis sets

29

= x
1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ y
0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ z
0
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= xê1 + yê2 + zê3

• The vectors                         are called the ‘basis vectors’, in this 
case, in three dimensions. 

{ê1 , ê2 , ê3}

• To do this, we write our vector as a linear combination of a set of 
special vectors called the ‘basis set.’

• The numbers x, y, z are called the coordinates of the vector.

 

v =
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



• In order to describe an arbitrary vector in the space of real numbers in n 

dimensions (       ), our basis vectors need to have n numbers.

Basics of basis sets

30

 Rn

ê1 =
1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ê2 =
0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ê3 =
0
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

• In order to describe an arbitrary vector in         , we need to have n basis 

vectors.
 Rn

• The basis set we wrote down earlier                      is called the ‘standard 

basis’. Each vector has one element that’s a one and the rest are zeros.
{ê1 , ê2 , ê3}



• In addition, the standard basis has the interesting property that

Orthonormal basis

31

each vector is a unit vector

êi ⋅ êi = 1

êi ⋅ êj = δ ij δ ij =
1 if i = j
0 if i ≠ j

⎧
⎨
⎪

⎩⎪

• These properties can be written compactly as

ê1 =
1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ê2 =
0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ê3 =
0
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

• Each vector is orthogonal to all the other vectors

êi ⋅ êj = 0, i ≠ jê1 ⋅ ê2 = 0 ê1 ⋅ ê3 = 0 ê2 ⋅ ê3 = 0

• Any basis set with these properties is called ‘orthonormal’.



Basics of basis sets

32

• The standard basis is not the only orthonormal basis

 
v

f̂1

f̂2
 
v = v ⋅ f̂ 1( ) f̂ 1  

+ v ⋅ f̂ 2( ) f̂ 2

• The vector coordinates are given by the dot products of the vector       

with each of the basis vectors.
 
v

 

!vf =
!v ⋅ f̂1
!v ⋅ f̂2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Consider a different set of orthogonal unit vectors:
 {

f1 ,

f2 }



• Vectors can also be written as a linear combination of (almost) any 
vectors, not just orthonormal basis vectors

Non-orthonormal basis sets

33

 
v

 

f1

 

f2

 
v = c1


f1 + c2


f2

 c1

f1

 c2

f2



Basics of basis sets

34

• Let’s decompose an arbitrary vector v in a basis set 

 
v = c1


f1 + c2


f2

 {

f1 ,

f2 }

• The coefficients c1 and c2 are called ‘coordinates of the vector v in 
the basis                . 

 {

f1 ,

f2 }

• The vector                    is called the ‘coordinate vector’ of      

in the basis                 . 

 
v

 

vf =
c1
c2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 {

f1 ,

f2 }



• Let’s look at an example. Consider the basis

Basics of basis sets

35
c1
1
3

⎛
⎝⎜

⎞
⎠⎟
+ c2

−2
1

⎛

⎝
⎜

⎞

⎠
⎟ =

3
5

⎛
⎝⎜

⎞
⎠⎟

 

{

f1 ,

f2 } =

1
3

⎛
⎝⎜

⎞
⎠⎟
,

−2
1

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

and the vector                   in the standard basis. 

 

v = 3
5

⎛
⎝⎜

⎞
⎠⎟

 c1

f1 + c2


f2 = v

• Write      as a linear combination of the new basis vectors:  
v

• Find the vector coordinates of        in the new basis. 
v

c1 − 2c2 = 3
3c1 + c2 = 5

system of equations 



• We can write this system of equations in matrix notation:

Basics of basis sets

36

c1 − 2c2 = 3
3c1 + c2 = 5  F

vf =
v

where F =
1 −2
3 1

⎛

⎝
⎜

⎞

⎠
⎟

 

vf =
c1
c2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

v = 3
5

⎛
⎝⎜

⎞
⎠⎟

 F
−1F vf = F

−1v

 
vf = F

−1 v

• Now solve for       by multiplying both sides of the equation by the 
inverse of matrix F .

 
vf



Basics of basis sets
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• We can find the inverse of F :

F −1 = 1
7

1 2
−3 1

⎛

⎝
⎜

⎞

⎠
⎟

= 1
7

3+10
−9 + 5

⎛

⎝
⎜

⎞

⎠
⎟

= 1
7

1 2
−3 1

⎛

⎝
⎜

⎞

⎠
⎟

3
5

⎛
⎝⎜

⎞
⎠⎟ 

vf = F
−1v

= 1
7

13
−4

⎛

⎝
⎜

⎞

⎠
⎟

 

vf =
13 / 7
−4 / 7

⎛

⎝
⎜

⎞

⎠
⎟

• Thus, we find the coordinate vector of v in basis  {

f1 ,

f2 }



Basics of basis sets
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!vf = F
−1 !v

• We can solve for        by multiplying both sides of the equation by 
the inverse of matrix F

 
vf

• In summary: to find the coordinate vector for v in the basis               , we 

construct a matrix F whose columns are just the elements of the basis 

vectors.

 
F =


f1

f2( )

 
F =


f1

f2

f3...


fn( )

  
!v = F !vf

such that

• But this only works if F has an inverse!

 {

f1 ,

f2 }

‘change of basis’
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• We need n vectors in         to form a basis in       . But not any set 
of n vectors will do the trick!

Subspaces

40

 Rn  Rn

• Consider the following set of vectors

 


f1 =

1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 


f2 =

0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 


f3 =

1
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

• Note that any linear combination of                     will always lie in 
the (x , y) plane

 
v = c1


f1 + c2


f2 + c3


f3 =

c1 + c3
c2 + c3
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 {

f1 ,

f2 ,

f3}

• Thus,  the set of vectors                      doesn’t span all of  R3

It only spans the x-y plane  - a subspace of  R3
 {

f1 ,

f2 ,

f3}



• Note that we can write any of these vectors as a linear 
combination of the other two.

Linear independence
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
f1 =

f3 −

f2

• Thus, this set of vectors is called ‘linearly dependent’.

 

f2 =

f3 −

f1 


f3 =

f1 +

f2

 


f1 =

1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 


f2 =

0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 


f3 =

1
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

• Any set of n linearly dependent vectors cannot form a basis in  Rn

• How do you know if a set of vectors is linearly dependent?

 
F =


f1

f2

f3...


fn( ) det(F)= 0
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• If                   then F maps       into a subspace of   det(F ) = 0
 
vf  Rn

F

Linear dependence

F = 0.5 0.5
0.5 0.5

⎛
⎝⎜

⎞
⎠⎟

• If F maps onto a subspace, then the mapping is not reversible!

  det(F ) = 0
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Geometric interpretation of determinant
• The determinant is the ‘volume’ of a unit cube after transformation (area 

of unit square in two dimensions).

A
area	=	1 area	=	0.5

det(A) = 0.5

det(A) = 1

• A pure rotation matrix has a determinant of one.

area	=	1 area	=	1
A
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F =


f1

f2 ...


fn( )

Change of basis

o are linearly independent                

• If                     then the vectors                    det(F) ≠ 0  


f1,

f2 ,...


fn{ }

o form a complete basis set in  Rn

 


f1,

f2 ,...


fn{ }

• Then the matrix  F  implements a ‘change of basis’ 

 
vf = F

−1 v

From standard basis to  

f

 
v = F vf

Or from      to standard basis  

f



• The change of basis is easy if                is an orthonormal basis…
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 {

f1 ,

f2 }

= 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

= I

F T = F −1Thus…

F = f̂1 f̂ 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

F is just a rotation matrix!

FT =
f̂1
f̂2

⎛

⎝
⎜

⎞

⎠
⎟

FTF = f̂1 f̂2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

f̂1
f̂2

⎛

⎝
⎜

⎞

⎠
⎟

Change of basis
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=
f̂1
f̂2

⎛

⎝
⎜

⎞

⎠
⎟
v

 
vf = F T v =

v ⋅ f̂1
v ⋅ f̂2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

• With an orthonormal basis set, the coordinates are just given by the dot

product with the basis vectors !

 
vf = F −1v

F = f̂1 f̂ 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

F−1 = F T =
f̂1
f̂2

⎛

⎝
⎜

⎞

⎠
⎟

Change of basis



 
v
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v = v ⋅ f̂ 1( ) f̂ 1

θ
f̂1

f̂2

 
+ v ⋅ f̂ 2( ) f̂ 2

• In two dimensions, there is a family of orthonormal basis sets

F =
cosθ sinθ
−sinθ cosθ

⎛

⎝
⎜

⎞

⎠
⎟f̂2 =

sinθ
cosθ

⎛

⎝
⎜

⎞

⎠
⎟f̂1 =

cosθ
−sinθ

⎛

⎝
⎜

⎞

⎠
⎟

• The vector coordinates are given by the dot products of the vector       

with each of the rotated basis vectors.
 
v

 

!vf =
!v ⋅ f̂1
!v ⋅ f̂2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Change of basis

 
vf = F T v



Seeing in high dimensions

https://research.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html

Screen	shot	©	Embedding	Projector Project.	All	rights	reserved.	This	content	is	excluded	from	our	
Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.
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