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Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations
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Review
• We have been considering neural networks that use firing 

rates, rather than spike trains. (‘rate model’)

u

v

input neuron

output neuron

w
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• Synaptic input is the firing rate of the input neuron 
times a synaptic weight w. 

Is = wu

v = F Is[ ] = F wu[ ]

• The output firing rate is some non-linear function 
of the synaptic input. 



• We generalized this model to the case when there are 
many synaptic inputs…

Review

1 2 3 4 5b		=

Input	firing	rates

 
u1 , u2 , u3 ,... unb⎡⎣ ⎤⎦ = u

v =	output	firing	rate

w2
w5w1

w3 w4

Is = w1u1 +w2 u2 +w3u3 + ...

Input	synaptic	weights

 
w1 , w2 , w3 ,... wnb⎡⎣ ⎤⎦ = w

= wbub
b
∑

 v = F
w ⋅ u[ ]
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 =
w ⋅ u



Review

u

v

input neuron

output neuron

w
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v = F Is[ ] = F wu[ ]

• The output firing rate is some non-linear function 
of the synaptic input. 

I

F(I −θ )

θ

Binary threshold neuron

I

F(I )

linear neuron

I

F(I )

Linear threshold 
neuron



• We can see that the choice of weights allows us to 
specify the receptive field of our output neuron

How to build a receptive field
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G(x)

x

1 2 3 4 5

v
−1

00

2
−1

 
w = 0 , −1 , 2 , −1 , 0[ ]

v = wbub
b
∑ r = G(x)I(x)∫
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• A perceptron carries out classification of inputs that represent 
features.

dogs

non-dogs

bad-breath

furry

Perceptrons
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dogs

non-dogs

bad-breath

furry
u2

u1

 Is =
!w ⋅ !uw2w1

u1 u2

 
w

Perceptrons

 v = F( !w ⋅ !u −θ )

v

wuθ

Binary Threshold Neuron for 
decision-making

• A perceptron carries out classification of inputs that represent 
features.



Classification in two dimensions
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u2

u1

• Let’s calculate the weight vector                       that gives 
us the decision boundary shown below.  Assume             .

 
w = w1 , w2( )

θ = 1

b

a

 v = F ( w ⋅ u −θ ) The decision boundary is  
w ⋅ u = θ

We have two points on the decision 
boundary we know, and two unknowns…

 
ua = a , 0( )

 
ub = 0 , b( )

 
ua ⋅
w = θ

 
ub ⋅
w = θ

• This is easy to do (by eye!) in two dimensions – but how 
about in higher dimensions?

 
!w = 1

a , 1b( )



Classification in higher dimensions
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• Let’s say we have n observations of our inputs

 
u =

ξi , i = 1,2, ... n

• After each observation, we are told 
whether this input corresponds to a 
dog.

Ti =
1 for yes
0 for no

⎧
⎨
⎪

⎩⎪ , i = 1,2, ... n

• We want to find       , such that

 
vi = step

!w ⋅
!
ξi −θ( ) = Ti , for all i

 
w

u2

u1

 


ξi

Ti = 0 Ti = 1



Perceptron learning
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• How would we find the weight vector w that separates 
dogs from non-dogs?

v

w2w1
θ

u1 u2

- we can start with a random set of weights

- or start with zero weights  
w = 0

• Each observation             gives us information we can use 
to construct      . This is called supervised learning. 

 
ui , Ti

 
w

• We can learn w iteratively: i.e., on each 
observation we will update our estimate of

 
w→ w + Δ w

 
w

• How do we start? u2

u1

Rosenblatt, 1957



Perceptron learning rule
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v

w2w1
θ

u1 u2

• Compare our classification to the right answer…

• On each observation of               , we use our current estimate 
of      to classify     :

 
vi = step

!w ⋅
!
ξi −θ( )

 
u =

ξi

 
w

 


ξi

o If               then we were right !  vi = Ti
so don’t do anything:  Δ

w = 0

u2

u1



Perceptron learning rule
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o If                then we were wrong, so update     .vi ≠ Ti  
w

Increase w in the direction of      if the correct answer was 1,
 


ξi

away from       if the correct answer was 0.
 


ξi

u2

u1

u2

u1

u2

u1

η is the ‘learning rate’

 

Δ
!w =

η
!
ξ i , if T =1

−η
!
ξ i , if T = 0

⎧

⎨
⎪

⎩⎪
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Neuronal Logic
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• The perceptron naturally implements simple logic gates…

u2

u1
 
w = 1 , 1( )
θ = 0.5

 
u = 0 , 0( )

0 , 1( )

1 , 0( )

1 , 1( )

11
0.5

u1 u2
A B

A∨ B

OR

u2

u1
 
w = 1 , 1( )
θ = 1.5

 
u = 0 , 0( )

0 , 1( )

1 , 0( )

1 , 1( )

11
1.5

u1 u2
A B

A∧ B

AND



Linear separability
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• There are some classification problems the perceptron 
cannot solve.

• Exclusive OR  (XOR) – A or B but not both

• The problem of linear separability

1 1
−1 −1

1 1
0.5

0.5 0.5

A B

A∧ B B∧ A

u1 u2

OR

Multi-layer perceptron

A

B



Linear separability
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• Classification problems are difficult because of 
transformations such as translation, rotation, scale

• In high dimensional space, images that are related by 
invariant transformations can be thought of as existing on 
‘manifolds’

u1

u2

Usually not linearly separable

Figure	source	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	
Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use


Invariance
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• Multilayer perceptrons can sometimes solve the problem!

• We can break the classification into several linearly 
separable problems

u1

u2

0 1
2 2

1 1
0.5

1 1

u1 u2

OR

Multi-layer perceptron



Deep neural networks
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• Multilayer perceptrons can sometimes solve the problem!

DiCarlo and Yamins, 2015

Figure	removed	due	to	copyright	restrictions.	See	Lecture	15	video	or	Figure	1	in	Yamins,	
D.L.K.,	J.J.	DiCarlo.	“Using	Goal-driven	Deep	Learning	Models	to	Understand	Sensory	Cortex.”	
Nature	Neuroscience	19	(2016):	356-365.

https://www.nature.com/articles/nn.4244
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• We have considered increasingly complex network models

More complex networks

22

u

v

input neuron

output neuron

w

Is = wu

v = F wu[ ]

Is = wbub
b
∑

input	firing	rates u1 , u2 , u3 ,... unb⎡⎣ ⎤⎦  =
u

w2
w5w1

w3 w4

1 2 3 4 5b		=

v

 =
w ⋅ u

 v = F
w ⋅ u[ ]



• We can expand our set of output neurons to make a 
more general network…

Two-layer feed-forward network
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1 2 3 4b		=input	firing	rates

u1 , u2 , u3 ,... unb⎡⎣ ⎤⎦  =
u

 =
vv1 , v2 , v3 ,... vna⎡⎣ ⎤⎦

output	firing	rates
1 2 3 4a		=
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v =W u

• We can write down the firing rates of our output neurons as 
follows:

v1 = W1b
b
∑ ub v1 =

wa=1 ⋅
u

 va =
wa ⋅
u va = Wab

b
∑ ub

v2 = W2b
b
∑ ub v2 =

wa=2 ⋅
u

Two-layer feed-forward network

v3 = W3b
b
∑ ub v3 =

wa=3 ⋅
u

• Our feed-forward network implements matrix multiplication!

1 2 3b		=

1 2 3a		=
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Wab

weight	matrix

• We have a weight from each of our input neurons onto 
each of our output neurons.

1 2 3 4b		=

1 2 3 4a		=

• We write the weights as a matrix.

=

w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34
w41 w42 w43 w44

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

=

wa=1
wa=2
wa=3
wa=4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

2

3

4

a		=
1 2 3 4b		=

Two-layer feed-forward network



=
w11 w12 w13
w21 w22 w23
w31 w32 w33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

u1
u2
u3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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• We can write down the firing rates of our output neurons as a 
matrix multiplication.

1 2 3b		=

1 2 3a		=

 

v =
v1
v2
v3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
v =W u va = Wab

b
∑ ub

Two-layer feed-forward network

 

=

wa=1 ⋅
u

wa=2 ⋅
u

wa=3 ⋅
u

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

• Dot product interpretation of matrix multiplication
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• Vectors are collections of numbers.

Matrix algebra
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• Matrices are collections of vectors

=
1 −2 0
3 4 1

⎛

⎝
⎜

⎞

⎠
⎟

x1=[1;3]									%column
x2=[-2;4]								%column
x3=[0;1]									%column
X=[x1,x2,x3]		%concatenate

Now we measure xa and 
xb at three different times

 

x1 =
1
3

⎛
⎝⎜

⎞
⎠⎟

 

x2 =
−2
4

⎛

⎝
⎜

⎞

⎠
⎟

 

x3 =
0
1

⎛
⎝⎜

⎞
⎠⎟

 

!x =
xa
xb

⎛

⎝
⎜

⎞

⎠
⎟Let’s say we make measurements of two 

different things, xa and xb , at a particular 
time.

We can write all our measurements down as a matrix 

 X = x1
x2
x3( )



Matrix algebra

29

• Labeling matrix elements

X =
x11 x12 x13
x21 x22 x23

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2 rows  x  3 columns

• Matrix transpose flips the rows and columns

XT =
x11 x21
x12 x22
x13 x23

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

3 rows  x  2 columns

XT = X

• Symmetric matrix

X = a c
c b

⎛
⎝⎜

⎞
⎠⎟



• In general, we carry out matrix multiplication by taking dot 
products of all the rows of the first matrix with all the columns of 
the second matrix.

Matrix multiplication

30

A =
1 −2 0
3 4 1

⎛

⎝
⎜

⎞

⎠
⎟ B =

4 2
7 3
−1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

4 −14 + 0 2 − 6 + 0
12 + 28−1 6 +12 + 0

⎛
⎝⎜

⎞
⎠⎟

AB =
1 −2 0
3 4 1

⎛

⎝
⎜

⎞

⎠
⎟

4 2
7 3
−1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

m x k k x n m x n

AB ≠ BA

=
−10 −4
39 18

⎛

⎝
⎜

⎞

⎠
⎟



• We can still do all our vector operations on the vectors in X

Matrix algebra
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• For example, let’s take the dot product of each of our 
vectors                     with another vector      . 

x1 ,
x2 ,
x3  

v

• We can do this in two different ways:

 

v =
1
−1

⎛

⎝
⎜

⎞

⎠
⎟

 
y = vT X = 1 −1( ) 1 −2 0

3 4 1
⎛

⎝
⎜

⎞

⎠
⎟ = −2 −6 −1( )

1 x 2 2 x 3 1 x 3



Matrix algebra

32

• We can do it like this…

=
1 3
−2 4
0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

⎛

⎝
⎜

⎞

⎠
⎟

v=[1;-1]		%column
y=X’*v				%’	is	transpose	

 
y = XT v =

−2
−6
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

3 x 2 2 x 1 3 x 1

• Alternatively, let’s take the dot product of each of our 
vectors                     with another vector      . 

x1 ,
x2 ,
x3  

v

• Note that matrix multiplication takes the dot product of 
each of the rows of the first matrix with each of the 
columns of the second matrix!



• When multiplying numbers, the number 1 has a special property:

Identity matrix

33

a ⋅1= a

AI = A

• Is there a matrix that when multiplied by A yields A?

• Yes! It is called the ‘Identity Matrix’ I = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

 

I x = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

x1
x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

=
x1
x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= x



• Square matrices are very useful

Systems of equations
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ax = c
• How do we solve this simple equation?

• Now let’s consider a ‘system’ of equations

x − 2 y = 3

3x + y = 5  A
x = c

A =
1 −2
3 1

⎛

⎝
⎜

⎞

⎠
⎟

 

c = 3
5

⎛
⎝⎜

⎞
⎠⎟

where

1 −2
3 1

⎛

⎝
⎜

⎞

⎠
⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

3
5

⎛
⎝⎜

⎞
⎠⎟

• We can write this as:

x = a−1c
divide both sides bya



• How do we divide both sides by A?

Systems of equations
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• We can’t, but we can multiply both sides by something which 
makes the A go away!

 I
x = A−1c

• The matrix inverse of A, denoted           , has the property that: 

A−1A = I
A−1

 A
−1A x = A−1c

 A
x = c• Thus to solve the system of equations

- Multiply both sides of the eqn by A−1

 
x = A−1c

 A
x = c



A−1 = 1
det(A)

d −b
−c a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

the inverse of A is given by

• For a matrix A given by

Matrix inverse in 2d

36

A = a b
c d

⎛
⎝⎜

⎞
⎠⎟

det(A) = ad − bc

where the determinant 
is given by:

A−1A = 1
det(A)

d −b
−c a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a b
c d

⎛
⎝⎜

⎞
⎠⎟

= 1
det(A)

ad − bc db − bd
−ca + ac −cb + ad

⎛

⎝
⎜

⎞

⎠
⎟ =

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

The matrix has an 
inverse iff det(A) ≠ 0

The matrix is ‘singular’ 
if det(A) = 0



Matrix inverse in 2d

37

A−1 = 1
7

1 2
−3 1

⎛

⎝
⎜

⎞

⎠
⎟

A =
1 −2
3 1

⎛

⎝
⎜

⎞

⎠
⎟

• The determinant is                                  so there is an inverse.det(A) = 1− (−6) = 7

 A
x = c

• Back to our system of equations

 

c = 3
5

⎛
⎝⎜

⎞
⎠⎟

• Thus,

 

x = A−1 c = 1
7

1 2
−3 1

⎛

⎝
⎜

⎞

⎠
⎟

3
5

⎛
⎝⎜

⎞
⎠⎟

= 1
7

13
−4

⎛
⎝⎜

⎞
⎠⎟
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Matrix transformation
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• You can see from our system of equations that the matrix A 
‘transformed’ vector x into the vector c

 
c = Ax

 

x =
13 / 7
−4 / 7

⎛

⎝
⎜

⎞

⎠
⎟

 

c = 3
5

⎛
⎝⎜

⎞
⎠⎟

 

x =
13 / 7
−4 / 7

⎛

⎝
⎜

⎞

⎠
⎟

 

c = 3
5

⎛
⎝⎜

⎞
⎠⎟ 

x = A−1 c

• The matrix   A-1 transformed vector c back into the vector x



Matrix transformation
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• In general A maps the set of vectors in         onto another set of 

vectors in        . What do these mappings look like?
 R2

 R2

A

A−1

det(A) ≠ 0



Matrix transformation
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It is instructive to consider small perturbations from the identity matrix.

A = I + Δ = 1+δ 0
0 1+δ

⎛

⎝⎜
⎞

⎠⎟ 
y = Ax

x=randn(2,N1);	%	Gaussian	
delta=0.3;
I=[1,0;0,1];
A=I+[delta,0;0,delta];
y=A*x;

• We already know the simplest transformation, when A=identity

 
y = I

x = x

 
x

 
y



Matrix transformation
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• It is instructive to consider small perturbations from the identity 
matrix.

 
y = AxFor example…

A = 1+δ 0
0 1

⎛
⎝⎜

⎞
⎠⎟

A = 1 0
0 1+δ

⎛
⎝⎜

⎞
⎠⎟

Stretch in x-direction Stretch in y-direction



Matrix transformation
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• It is instructive to consider small perturbations from the identity 
matrix.

A = 1+δ 0
0 1−δ

⎛

⎝⎜
⎞

⎠⎟

For example…  
y = Ax



Matrix symmetries
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• Matrix multiplication can be used to produce ‘symmetry 
operations’

A =
−1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟ A =

−1 0
0 −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Mirror reflection Inversion through the origin



Matrix transformations

45

• Perturbations from the identity matrix
 
y = Ax

A = 1+δ 0
0 1+δ

⎛

⎝⎜
⎞

⎠⎟
A = 1+δ 0

0 1
⎛
⎝⎜

⎞
⎠⎟

A = 1 0
0 1+δ

⎛
⎝⎜

⎞
⎠⎟

A = 1+δ 0
0 1−δ

⎛

⎝⎜
⎞

⎠⎟

A =
−1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟ A =

−1 0
0 −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Λ = a 0
0 b

⎛
⎝⎜

⎞
⎠⎟

These are all diagonal matrices

Λ−1 =
a−1 0

0 b−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟



Matrix transformation
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• It is instructive to consider small perturbations from the identity 
matrix.

A = 1 +δ
0 1

⎛
⎝⎜

⎞
⎠⎟

A = 1 0
−δ 1

⎛
⎝⎜

⎞
⎠⎟

Shear along x Shear along y



Matrix transformation
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• It is instructive to consider small perturbations from the identity 
matrix.

Rotation!

A = 1 +δ
−δ 1

⎛

⎝⎜
⎞

⎠⎟



Rotation matrix
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Φ(θ ) = cosθ −sinθ
sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
Φ(45o)= 1

2
1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

θ = 90oθ = 45oθ = 25oθ = 10o

• We can implement a rotation in the plane by an arbitrary angle θ
with the following matrix.



Rotation matrix
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• Does a rotation matrix have an inverse?

Φ(θ ) = cosθ −sinθ
sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
Φ(−θ ) = cosθ sinθ

−sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟

Φ(−θ )Φ(θ ) = I

• A rotation by angle +θ followed by a rotation by angle –θ
just puts everything back where it was.

Φ−1(θ ) = Φ(−θ )

• Also, the inverse of A is just the transpose of A!

Φ−1(θ ) = ΦT (θ )

det(Φ) =1
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v =W u

Two-layer feed-forward network

• Our feed-forward network implements an arbitrary matrix 
transformation!

1 2 3 4b		=

1 2 3 4a		=



Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations
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Rotated transformations
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• The rotation matrix allows us to do a very cool trick.

• We can do any of the transformations above (stretch, mirror 
reflection, shear), not just along the axes, but in any arbitrary 
direction.

For example, stretch along a 45° angle



ΛMake a transformation :

Then rotate our vectors back by angle     :

Rotated transformations
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• We will do this by making three successive transformations:

Φ(−θ ) = ΦT (θ )

Φ(θ )

‘Unrotate’ our vectors by angle       :−θ

θ

• We do each of these steps by multiplying our matrices together

 Φ
T xΦ Λ
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• Let’s construct a matrix that produces a stretch along a 45°
angle…

 Φ
T x 

x  ΛΦ
T x  ΦΛΦT x

ΦT = Φ(−45o )

= 1
2

1 1
−1 1

⎛

⎝
⎜

⎞

⎠
⎟

Φ(+45o )

= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ

= 2 0
0 1

⎛
⎝⎜

⎞
⎠⎟

ΦΛΦT = 1
2

3 1
1 3

⎛
⎝⎜

⎞
⎠⎟

Rotated transformations
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