
Introduction to Neural
Computation

Prof. Michale Fee
MIT BCS 9.40 — 2018

Lecture 15
Perceptrons and Matrix Operations

Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations

2

Review
• We have been considering neural networks that use firing

rates, rather than spike trains. (‘rate model’)

u

v

input neuron

output neuron

w

3

• Synaptic input is the firing rate of the input neuron
times a synaptic weight w.

Is = wu

v = F Is[] = F wu[]

• The output firing rate is some non-linear function
of the synaptic input.

• We generalized this model to the case when there are
many synaptic inputs…

Review

1 2 3 4 5b		=

Input	firing	rates

u1 , u2 , u3 ,... unb⎡⎣ ⎤⎦ = u

v =	output	firing	rate

w2
w5w1

w3 w4

Is = w1u1 +w2 u2 +w3u3 + ...

Input	synaptic	weights

w1 , w2 , w3 ,... wnb⎡⎣ ⎤⎦ = w

= wbub
b
∑

 v = F
w ⋅ u[]

4

 =
w ⋅ u

Review

u

v

input neuron

output neuron

w

5

v = F Is[] = F wu[]

• The output firing rate is some non-linear function
of the synaptic input.

I

F(I −θ)

θ

Binary threshold neuron

I

F(I)

linear neuron

I

F(I)

Linear threshold
neuron

• We can see that the choice of weights allows us to
specify the receptive field of our output neuron

How to build a receptive field

6

G(x)

x

1 2 3 4 5

v
−1

00

2
−1

w = 0 , −1 , 2 , −1 , 0[]

v = wbub
b
∑ r = G(x)I(x)∫

Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations

7

8

• A perceptron carries out classification of inputs that represent
features.

dogs

non-dogs

bad-breath

furry

Perceptrons

9

dogs

non-dogs

bad-breath

furry
u2

u1

 Is =
!w ⋅ !uw2w1

u1 u2

w

Perceptrons

 v = F(!w ⋅ !u −θ)

v

wuθ

Binary Threshold Neuron for
decision-making

• A perceptron carries out classification of inputs that represent
features.

Classification in two dimensions

10

u2

u1

• Let’s calculate the weight vector that gives
us the decision boundary shown below. Assume .

w = w1 , w2()

θ = 1

b

a

 v = F (w ⋅ u −θ) The decision boundary is
w ⋅ u = θ

We have two points on the decision
boundary we know, and two unknowns…

ua = a , 0()

ub = 0 , b()

ua ⋅
w = θ

ub ⋅
w = θ

• This is easy to do (by eye!) in two dimensions – but how
about in higher dimensions?

!w = 1

a , 1b()

Classification in higher dimensions

11

• Let’s say we have n observations of our inputs

u =

ξi , i = 1,2, ... n

• After each observation, we are told
whether this input corresponds to a
dog.

Ti =
1 for yes
0 for no

⎧
⎨
⎪

⎩⎪ , i = 1,2, ... n

• We want to find , such that

vi = step

!w ⋅
!
ξi −θ() = Ti , for all i

w

u2

u1


ξi

Ti = 0 Ti = 1

Perceptron learning

12

• How would we find the weight vector w that separates
dogs from non-dogs?

v

w2w1
θ

u1 u2

- we can start with a random set of weights

- or start with zero weights
w = 0

• Each observation gives us information we can use
to construct . This is called supervised learning.

ui , Ti

w

• We can learn w iteratively: i.e., on each
observation we will update our estimate of

w→ w + Δ w

w

• How do we start? u2

u1

Rosenblatt, 1957

Perceptron learning rule

13

v

w2w1
θ

u1 u2

• Compare our classification to the right answer…

• On each observation of , we use our current estimate
of to classify :

vi = step

!w ⋅
!
ξi −θ()

u =

ξi

w


ξi

o If then we were right ! vi = Ti
so don’t do anything: Δ

w = 0

u2

u1

Perceptron learning rule

14

o If then we were wrong, so update .vi ≠ Ti
w

Increase w in the direction of if the correct answer was 1,


ξi

away from if the correct answer was 0.


ξi

u2

u1

u2

u1

u2

u1

η is the ‘learning rate’

Δ
!w =

η
!
ξ i , if T =1

−η
!
ξ i , if T = 0

⎧

⎨
⎪

⎩⎪

Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations

15

Neuronal Logic

16

• The perceptron naturally implements simple logic gates…

u2

u1

w = 1 , 1()
θ = 0.5

u = 0 , 0()

0 , 1()

1 , 0()

1 , 1()

11
0.5

u1 u2
A B

A∨ B

OR

u2

u1

w = 1 , 1()
θ = 1.5

u = 0 , 0()

0 , 1()

1 , 0()

1 , 1()

11
1.5

u1 u2
A B

A∧ B

AND

Linear separability

17

• There are some classification problems the perceptron
cannot solve.

• Exclusive OR (XOR) – A or B but not both

• The problem of linear separability

1 1
−1 −1

1 1
0.5

0.5 0.5

A B

A∧ B B∧ A

u1 u2

OR

Multi-layer perceptron

A

B

Linear separability

18

• Classification problems are difficult because of
transformations such as translation, rotation, scale

• In high dimensional space, images that are related by
invariant transformations can be thought of as existing on
‘manifolds’

u1

u2

Usually not linearly separable

Figure	source	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	
Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use

Invariance

19

• Multilayer perceptrons can sometimes solve the problem!

• We can break the classification into several linearly
separable problems

u1

u2

0 1
2 2

1 1
0.5

1 1

u1 u2

OR

Multi-layer perceptron

Deep neural networks

20

• Multilayer perceptrons can sometimes solve the problem!

DiCarlo and Yamins, 2015

Figure	removed	due	to	copyright	restrictions.	See	Lecture	15	video	or	Figure	1	in	Yamins,	
D.L.K.,	J.J.	DiCarlo.	“Using	Goal-driven	Deep	Learning	Models	to	Understand	Sensory	Cortex.”	
Nature	Neuroscience	19	(2016):	356-365.

https://www.nature.com/articles/nn.4244

Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations

21

• We have considered increasingly complex network models

More complex networks

22

u

v

input neuron

output neuron

w

Is = wu

v = F wu[]

Is = wbub
b
∑

input	firing	rates u1 , u2 , u3 ,... unb⎡⎣ ⎤⎦ =
u

w2
w5w1

w3 w4

1 2 3 4 5b		=

v

 =
w ⋅ u

 v = F
w ⋅ u[]

• We can expand our set of output neurons to make a
more general network…

Two-layer feed-forward network

23

1 2 3 4b		=input	firing	rates

u1 , u2 , u3 ,... unb⎡⎣ ⎤⎦ =
u

 =
vv1 , v2 , v3 ,... vna⎡⎣ ⎤⎦

output	firing	rates
1 2 3 4a		=

24

v =W u

• We can write down the firing rates of our output neurons as
follows:

v1 = W1b
b
∑ ub v1 =

wa=1 ⋅
u

 va =
wa ⋅
u va = Wab

b
∑ ub

v2 = W2b
b
∑ ub v2 =

wa=2 ⋅
u

Two-layer feed-forward network

v3 = W3b
b
∑ ub v3 =

wa=3 ⋅
u

• Our feed-forward network implements matrix multiplication!

1 2 3b		=

1 2 3a		=

25

Wab

weight	matrix

• We have a weight from each of our input neurons onto
each of our output neurons.

1 2 3 4b		=

1 2 3 4a		=

• We write the weights as a matrix.

=

w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34
w41 w42 w43 w44

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

wa=1
wa=2
wa=3
wa=4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

2

3

4

a		=
1 2 3 4b		=

Two-layer feed-forward network

=
w11 w12 w13
w21 w22 w23
w31 w32 w33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

u1
u2
u3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

26

• We can write down the firing rates of our output neurons as a
matrix multiplication.

1 2 3b		=

1 2 3a		=

v =
v1
v2
v3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

v =W u va = Wab

b
∑ ub

Two-layer feed-forward network

=

wa=1 ⋅
u

wa=2 ⋅
u

wa=3 ⋅
u

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

• Dot product interpretation of matrix multiplication

Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations

27

• Vectors are collections of numbers.

Matrix algebra

28

• Matrices are collections of vectors

=
1 −2 0
3 4 1

⎛

⎝
⎜

⎞

⎠
⎟

x1=[1;3]									%column
x2=[-2;4]								%column
x3=[0;1]									%column
X=[x1,x2,x3]		%concatenate

Now we measure xa and
xb at three different times

x1 =
1
3

⎛
⎝⎜

⎞
⎠⎟

x2 =
−2
4

⎛

⎝
⎜

⎞

⎠
⎟

x3 =
0
1

⎛
⎝⎜

⎞
⎠⎟

!x =
xa
xb

⎛

⎝
⎜

⎞

⎠
⎟Let’s say we make measurements of two

different things, xa and xb , at a particular
time.

We can write all our measurements down as a matrix

 X = x1
x2
x3()

Matrix algebra

29

• Labeling matrix elements

X =
x11 x12 x13
x21 x22 x23

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2 rows x 3 columns

• Matrix transpose flips the rows and columns

XT =
x11 x21
x12 x22
x13 x23

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

3 rows x 2 columns

XT = X

• Symmetric matrix

X = a c
c b

⎛
⎝⎜

⎞
⎠⎟

• In general, we carry out matrix multiplication by taking dot
products of all the rows of the first matrix with all the columns of
the second matrix.

Matrix multiplication

30

A =
1 −2 0
3 4 1

⎛

⎝
⎜

⎞

⎠
⎟ B =

4 2
7 3
−1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

4 −14 + 0 2 − 6 + 0
12 + 28−1 6 +12 + 0

⎛
⎝⎜

⎞
⎠⎟

AB =
1 −2 0
3 4 1

⎛

⎝
⎜

⎞

⎠
⎟

4 2
7 3
−1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

m x k k x n m x n

AB ≠ BA

=
−10 −4
39 18

⎛

⎝
⎜

⎞

⎠
⎟

• We can still do all our vector operations on the vectors in X

Matrix algebra

31

• For example, let’s take the dot product of each of our
vectors with another vector .

x1 ,
x2 ,
x3

v

• We can do this in two different ways:

v =
1
−1

⎛

⎝
⎜

⎞

⎠
⎟

y = vT X = 1 −1() 1 −2 0

3 4 1
⎛

⎝
⎜

⎞

⎠
⎟ = −2 −6 −1()

1 x 2 2 x 3 1 x 3

Matrix algebra

32

• We can do it like this…

=
1 3
−2 4
0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

⎛

⎝
⎜

⎞

⎠
⎟

v=[1;-1]		%column
y=X’*v				%’	is	transpose	

y = XT v =

−2
−6
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

3 x 2 2 x 1 3 x 1

• Alternatively, let’s take the dot product of each of our
vectors with another vector .

x1 ,
x2 ,
x3

v

• Note that matrix multiplication takes the dot product of
each of the rows of the first matrix with each of the
columns of the second matrix!

• When multiplying numbers, the number 1 has a special property:

Identity matrix

33

a ⋅1= a

AI = A

• Is there a matrix that when multiplied by A yields A?

• Yes! It is called the ‘Identity Matrix’ I = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

I x = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

x1
x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
x1
x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= x

• Square matrices are very useful

Systems of equations

34

ax = c
• How do we solve this simple equation?

• Now let’s consider a ‘system’ of equations

x − 2 y = 3

3x + y = 5 A
x = c

A =
1 −2
3 1

⎛

⎝
⎜

⎞

⎠
⎟

c = 3
5

⎛
⎝⎜

⎞
⎠⎟

where

1 −2
3 1

⎛

⎝
⎜

⎞

⎠
⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

3
5

⎛
⎝⎜

⎞
⎠⎟

• We can write this as:

x = a−1c
divide both sides bya

• How do we divide both sides by A?

Systems of equations

35

• We can’t, but we can multiply both sides by something which
makes the A go away!

 I
x = A−1c

• The matrix inverse of A, denoted , has the property that:

A−1A = I
A−1

 A
−1A x = A−1c

 A
x = c• Thus to solve the system of equations

- Multiply both sides of the eqn by A−1

x = A−1c

 A
x = c

A−1 = 1
det(A)

d −b
−c a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

the inverse of A is given by

• For a matrix A given by

Matrix inverse in 2d

36

A = a b
c d

⎛
⎝⎜

⎞
⎠⎟

det(A) = ad − bc

where the determinant
is given by:

A−1A = 1
det(A)

d −b
−c a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a b
c d

⎛
⎝⎜

⎞
⎠⎟

= 1
det(A)

ad − bc db − bd
−ca + ac −cb + ad

⎛

⎝
⎜

⎞

⎠
⎟ =

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

The matrix has an
inverse iff det(A) ≠ 0

The matrix is ‘singular’
if det(A) = 0

Matrix inverse in 2d

37

A−1 = 1
7

1 2
−3 1

⎛

⎝
⎜

⎞

⎠
⎟

A =
1 −2
3 1

⎛

⎝
⎜

⎞

⎠
⎟

• The determinant is so there is an inverse.det(A) = 1− (−6) = 7

 A
x = c

• Back to our system of equations

c = 3
5

⎛
⎝⎜

⎞
⎠⎟

• Thus,

x = A−1 c = 1
7

1 2
−3 1

⎛

⎝
⎜

⎞

⎠
⎟

3
5

⎛
⎝⎜

⎞
⎠⎟

= 1
7

13
−4

⎛
⎝⎜

⎞
⎠⎟

Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations

38

Matrix transformation

39

• You can see from our system of equations that the matrix A
‘transformed’ vector x into the vector c

c = Ax

x =
13 / 7
−4 / 7

⎛

⎝
⎜

⎞

⎠
⎟

c = 3
5

⎛
⎝⎜

⎞
⎠⎟

x =
13 / 7
−4 / 7

⎛

⎝
⎜

⎞

⎠
⎟

c = 3
5

⎛
⎝⎜

⎞
⎠⎟

x = A−1 c

• The matrix A-1 transformed vector c back into the vector x

Matrix transformation

40

• In general A maps the set of vectors in onto another set of

vectors in . What do these mappings look like?
 R2

 R2

A

A−1

det(A) ≠ 0

Matrix transformation

41

It is instructive to consider small perturbations from the identity matrix.

A = I + Δ = 1+δ 0
0 1+δ

⎛

⎝⎜
⎞

⎠⎟
y = Ax

x=randn(2,N1);	%	Gaussian	
delta=0.3;
I=[1,0;0,1];
A=I+[delta,0;0,delta];
y=A*x;

• We already know the simplest transformation, when A=identity

y = I

x = x

x

y

Matrix transformation

42

• It is instructive to consider small perturbations from the identity
matrix.

y = AxFor example…

A = 1+δ 0
0 1

⎛
⎝⎜

⎞
⎠⎟

A = 1 0
0 1+δ

⎛
⎝⎜

⎞
⎠⎟

Stretch in x-direction Stretch in y-direction

Matrix transformation

43

• It is instructive to consider small perturbations from the identity
matrix.

A = 1+δ 0
0 1−δ

⎛

⎝⎜
⎞

⎠⎟

For example…
y = Ax

Matrix symmetries

44

• Matrix multiplication can be used to produce ‘symmetry
operations’

A =
−1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟ A =

−1 0
0 −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Mirror reflection Inversion through the origin

Matrix transformations

45

• Perturbations from the identity matrix

y = Ax

A = 1+δ 0
0 1+δ

⎛

⎝⎜
⎞

⎠⎟
A = 1+δ 0

0 1
⎛
⎝⎜

⎞
⎠⎟

A = 1 0
0 1+δ

⎛
⎝⎜

⎞
⎠⎟

A = 1+δ 0
0 1−δ

⎛

⎝⎜
⎞

⎠⎟

A =
−1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟ A =

−1 0
0 −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Λ = a 0
0 b

⎛
⎝⎜

⎞
⎠⎟

These are all diagonal matrices

Λ−1 =
a−1 0

0 b−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Matrix transformation

46

• It is instructive to consider small perturbations from the identity
matrix.

A = 1 +δ
0 1

⎛
⎝⎜

⎞
⎠⎟

A = 1 0
−δ 1

⎛
⎝⎜

⎞
⎠⎟

Shear along x Shear along y

Matrix transformation

47

• It is instructive to consider small perturbations from the identity
matrix.

Rotation!

A = 1 +δ
−δ 1

⎛

⎝⎜
⎞

⎠⎟

Rotation matrix

48

Φ(θ) = cosθ −sinθ
sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
Φ(45o)= 1

2
1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

θ = 90oθ = 45oθ = 25oθ = 10o

• We can implement a rotation in the plane by an arbitrary angle θ
with the following matrix.

Rotation matrix

49

• Does a rotation matrix have an inverse?

Φ(θ) = cosθ −sinθ
sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
Φ(−θ) = cosθ sinθ

−sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟

Φ(−θ)Φ(θ) = I

• A rotation by angle +θ followed by a rotation by angle –θ
just puts everything back where it was.

Φ−1(θ) = Φ(−θ)

• Also, the inverse of A is just the transpose of A!

Φ−1(θ) = ΦT (θ)

det(Φ) =1

50

v =W u

Two-layer feed-forward network

• Our feed-forward network implements an arbitrary matrix
transformation!

1 2 3 4b		=

1 2 3 4a		=

Learning Objectives for Lecture 15

• Perceptrons and perceptron learning rule

• Neuronal logic, linear separability, and invariance

• Two-layer feedforward networks

• Matrix algebra review

• Matrix transformations

51

Rotated transformations

52

• The rotation matrix allows us to do a very cool trick.

• We can do any of the transformations above (stretch, mirror
reflection, shear), not just along the axes, but in any arbitrary
direction.

For example, stretch along a 45° angle

ΛMake a transformation :

Then rotate our vectors back by angle :

Rotated transformations

53

• We will do this by making three successive transformations:

Φ(−θ) = ΦT (θ)

Φ(θ)

‘Unrotate’ our vectors by angle :−θ

θ

• We do each of these steps by multiplying our matrices together

 Φ
T xΦ Λ

54

• Let’s construct a matrix that produces a stretch along a 45°
angle…

 Φ
T x

x ΛΦ
T x ΦΛΦT x

ΦT = Φ(−45o)

= 1
2

1 1
−1 1

⎛

⎝
⎜

⎞

⎠
⎟

Φ(+45o)

= 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟

Λ

= 2 0
0 1

⎛
⎝⎜

⎞
⎠⎟

ΦΛΦT = 1
2

3 1
1 3

⎛
⎝⎜

⎞
⎠⎟

Rotated transformations

MIT OpenCourseWare
https://ocw.mit.edu/

9.40 Introduction to Neural Computation
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

