

Introduction to Neural
Computation

Prof. Michale Fee
MIT BCS 9.40 — 2018

Lecture 14
Rate models and Perceptrons

Game plan for Lectures 14 – 18
Examine the computational properties of

networks of neurons

• Rate models
• Feed-forward neural networks (Perceptrons)

• Matrix operations
• Basis sets
• Principal components analysis

• Recurrent Neural Networks
• Line attractors in short term memory
• Hopfield networks

2

Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons

3

Neural Network Models
• We are going to examine some of the computational

properties of networks of neurons.

• Our first step is to derive a simplified mathematical model of
neurons that we can study analytically.

Why would we want to do this?

• For example, we approximated the detailed spiking properties
of neurons (HH model) with an integrate & fire (IF) model.

• This is not enough of a simplification to develop an analytical
model of neural circuits.

4

Rate models
• Let’s start with two neurons, an input neuron that synapses with

weight w onto an output neuron.

• We are going to ignore spike times, and describe the inputs
and outputs of our neurons simply as firing rates.

• In the simplest case… linear neurons! v = wu

How can we justify this?

input neuron

u = firingrateof input neuron

w = synaptic strength (weight) w
v = firingrateof output neuron

output neuron

u

v
5

Rate models

• Let’s examine the response of the output neuron to
a single input spike.

input spike

e− t /τ s Ĝ
syn (t) = Gmax Ĝ

syn (t)

post-synaptic conductance Î syn (t) = Ĝ
syn (t)[V − Esyn]

Ignore synaptic saturation

input neuron
Now write Î syn (t) = wK(t)

w

u

v
where K(t) is a kernel of unit area

output neuron 1 e−t /τ s K(t) = area =1
τ s 6

Rate models
• How do we get the response to multiple input spikes?

Input spike train input
spikes

ρ(t) = ∑δ (t − ti)
i Isyn (t)

• We convolve the input spike train with the synaptic kernel !

But what is this?
input neuron

Isyn (t) = wK ∗ρ(t)

• If K is a kernel with area normalized to one, then…
w

u

v
K ∗ρ(t) = u(t)

output neuron
is just the firing rate of the input neuron!

7

Rate models
• Thus, we can write presynaptic firing rate as

u

v

input neuron

output neuron

w

u(t) = K ∗ρ(t)

u(t) = K ∗ρ(t) K

ρ(t) = δ (t − ti)
i
∑

Isyn (t) = w K ∗ ρ(t)
= wu(t)

pulse_of_firing_spikes.m

8

Rate models
• Now, how about the firing rate of the output neuron?

• You remember that when you injected a constant current into
our Integrate and Fire model…

The steady-state firing rate of the neuron had a threshold current below
which the neuron would not spike, and some increasing f.r. above
threshold.

F(I)

input neuron I

w

u

v
• In general, we can write the output firing rate

of our model neuron as:
output neuron

v = F[Is] = F[wu] 9

I

Linear rate models
• We will now consider an even greater simplification of our

neurons… assume they are linear.
F(I)

F[]x = x

We will come back to non-linear neurons
shortly… they will be very important.

• Of course real neurons can’t have negative firing
input neuron u

v

rates, but we can gain a lot of insight using this
approximation.

w • Thus, we can write the output firing rate of our
linear neuron as: output neuron

v = wu
10

Multiple inputs
• What happens when our output neuron has many inputs?

u1 u2 u3 u4 u5

1 2 3 4 5

• The total input to our neuron is a sum
of all the different inputs weighted by
their synaptic strength! w1

Isyn = w1u1 + w2u2 + w3u3 + …

• The steady-state response of our linear
neuron is now:

v = wbub ∑
11 b

Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons

12

How to build a receptive field
• We can see that the choice of weights allows us to

specify the receptive field of our output neuron

G(x)

x

1 2 3 4 5

−1

0 0

2
−1 v = ∑wbub r = G(x)I(x)

b ∫
v

w = [0 , −1 , 2 , −1 , 0]
13

How to build a receptive field
• We can even build 2D receptive fields with the same

formalism.

y

x

v = ∑wx,y ux,y
x,y v

G(x, y)

w

14

Linear algebra detour
• Mathematically, we have described the response of our

linear neuron as
u 1 2 3 4 5

v = ∑wbub
b

w
• We are going to start using vector and

matrix notation to describe the properties v
of networks

• …because it is much more compact and powerful

• We have to take a short detour to learn some linear
algebra.

15

Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons

16

Linear algebra detour
• A vector is a collection of numbers.

• The number of numbers in the collection is called the
dimensionality of the vector. x̂2

vector components
• If there are two or three numbers, we can or elements

draw a vector as a position, or direction,
in space. x x = (x1 , x2) x = (x1 x2) row vector

x̂1 (0 , 0)
x =

⎜ ⎟⎟⎠
⎜
⎝

⎞ ⎛  x1
column vector R2

x2
17

Vector sum
• Sum of two vectors

⎛ ⎛ ⎛ ⎞
⎟
⎟
⎟
⎟
+
⎜
⎜
⎜
⎜

⎞ x1 + y1

x2 + y2

...

x1

x2

...

y1

y2

...

⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜

⎟
⎟
⎟
⎟

  x + y = = resultant
  x + y xn + yn xn yn ⎝ ⎝ ⎝ ⎠ ⎠ x

Element-by-element addition y

⎞
⎟
⎟
⎟
⎟
⎠

18

Vector products
• There are several ways of taking the product of two

vectors
• Element-by-element product

• Inner product

• Outer product

We will cover this later

• Cross product

Important in physics, but we won’t cover this.

19

Vector products
• Element-by-element product (Hadamard product)

⎛ ⎛ ⎞
⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜

⎛ ⎞
⎟
⎟
⎟
⎟

=
⎜
⎜
⎜
⎜

⎞
⎟
⎟
⎟
⎟

x1

x2



y1

y2



x1y1

x2 y2



⎜
⎜
⎜
⎜

  x  y =

xn yn xnyn ⎝ ⎝ ⎠ ⎝ ⎠ ⎠

• In MATLAB®, the element-by-element product is x.*y

20

• Inner product or dot product

Vector products

21

x ⋅ y = x1y1 + x2y2 + ... + xnyn

= xiyi
i=1

n

∑ = scalar

x ⋅ y = y ⋅ x

Some properties…
commutative

x =

x1
x2

xn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

y =

y1
y2

yn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

w ⋅ x + y() = w⋅ x + w⋅ y

distributive

 a
x() ⋅ y =a x ⋅ y()

linearity

• Inner product in matrix notation

Vector products

22

x ⋅ y =

x1 x2  xn()

y1
y2

yn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 x N N x 1

= scalar

1 x 1

• In MATLAB®…
x = [1; 2; 3]; % column vector (1 x 3)
y = [2; 4; 6]; % column vector (1 x 3)
z = x’ * y; % ‘ means transpose

% row*column vector (1x3)*(3x1)

• Dot product of a vector with itself

Vector products

23

x ⋅ x = xi xi
i=1

n

∑ =
x 2

is the ‘norm’ or ‘magnitude’ of the vector

x

x = xi xi
i=1

n

∑ Pythagorean theorem

• A unit vector has length 1.

Unit vector

24

• We can express any vector as a product of a length
times a unit vector:

x = x x̂

x̂

x̂ = 1

x̂ = 1
x
x

• We can make a unit vector out of any vector

x̂ ⋅ x̂ = 1

Projection

25

 =
!y cosθ

x̂

y

θ x̂

y

θ

y

y ⋅ x̂() x̂

Find the component of vector in the direction of vector
.

y

x̂

= scalar times unit vector

‘Scalar projection’ of onto x̂
y

Let be a unit vector.x̂

!y ⋅ x̂

‘Vector projection’ of onto ̂x
y

• Dot product is related to the cosine of the angle
between two vectors

Geometric intuition of dot products

26

x ⋅ y =

x y cosθ

x

y

θ

cosθ =

x ⋅ y
x y

• If x and y are unit vectors, then…

x̂ ⋅ ŷ = cosθ

• Two vectors are orthogonal (perpendicular) if and only
if their dot product is zero.

Orthogonality

27

x

y

θ = 90o

x ⋅ y = x y cosθ

x ⋅ y = 0

cos90o = 0

• The projection of y onto x is zero.

• The vector projection of y along x is the zero vector.

• The dot product is related to the statistical correlation
between the elements of the two vectors

‘Correlation’ intuition of dot product

28

cosθ =

y ⋅ x
x y

=
yixi

i
∑
xixi

i
∑ yiyi

i
∑

Bounded between -1 and 1

• The response of a neuron is the dot-product of the stimulus
vector with the weight vector (receptive field).

Optimal stimulus

29

1 2 3 4 5

v

I(x) or ub

x

v = wbub
b
∑

 v = w ⋅ u

• Thus, for a given amount of power in the stimulus , the
stimulus that has the best overlap with the receptive field (
) produces the largest neuronal response.cosθ = 1

 a
2 = u 2

 =
w u cosθ

u = aŵ

• We now have a definition of the ‘optimal stimulus’:

Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons

30

Classification

31

• A general computational problem solved by brain
circuits is that of classification.

• Feedforward circuits can be very good at classification

o a friendly dog or a wolf

o an edible object or a poisonous one

• Does that visual input represent a house cat or a tiger

sensory	inputs

‘dog’ ‘cat’ ‘elephant’

Object recognition in human cortex

32Quiroga et	al	Nature	2005Recordings in Right Anterior Hippocampus

Figure	removed	due	to	copyright	restrictions.	See	Lecture	14	video	or	Figure	1	in	Quiroga,	R.Q.,	et	al.	
“Invariant	Visual	Representation	by	Single	Neurons	in	the	Human	Brain.”	Nature 435	(2005):	1102-1107.

https://www.nature.com/articles/nature03687

Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons

33

Perceptrons

34

• A central feature of classification is decision making.

• How do we make a neuron that fires when it sees a dog, but
does not fire when there is no dog?

• How does a neural circuit make a decision?

• Classification problem in one dimension: one input neuron
whose firing rate is proportional to a feature - ‘dogginess’.

dogs
non-
dogs

u *

-There exists a ‘classification boundary’ in stimulus space
that separates dogs from non-dogs.

Spike threshold!

‘dogginess’0
u

u

v
w

‘dog!’

observations ‘dogginess’

Generic	images	sources	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use

Binary threshold unit

35

• For a perceptron, we make a simplified model of a neuron
that is very good at making decisions:

F(x) = step(x)

Thus, the output neuron begins to fire when the input neuron has a
firing rate greater than the ‘decision boundary.’

wu >θNeuron fires when the input

v = F(wu −θ)
Theta is the threshold, not an angle.

v

wuθ

step(x)

x

uth = θ /w

Setting the weight

36

uth = θ /w

• To classify, we need to learn the right to make uth = u *w

(‘dogginess’)

0

observations

u

non-dogs
dogs

u *
u

v

‘dogginess’

w
‘dog!’

0 wuθ

uth > u *

small w

0 wu

u *

θ

uth < u *

big w

θ0 wu

u *

uth = u *

w just right

u *

Setting the weight

37

• To classify, we need to learn the right to make uth = u *w

0 wu

u *

θ

uth > u *

dogs
non-
dogs

0 wu

u *

θ

uth < u *

θ

dogs
non-dogs

0 wu

u *

uth = u *

Error: Dogs classified as
non-dogs

⇒Make w bigger

Error: Non-dogs classified
as dogs

⇒Make w smaller

Decision boundary in two dimensions

38

• Sometimes classification has to be done on the basis of many
features, not just one.

u2

u1

 v =
w ⋅ u

w2w1

u1 u2dogs

bad-breath

furry

non-dogs

Generic	images	sources	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use

Decision boundary in two dimensions

39

• Let’s look at the case where our neuron gets two inputs

 v = F (w ⋅ u −θ)

w ⋅ u −θ = 0

w ⋅ u = θ

• Now the decision boundary looks different…

w1u1 +w2u2 = θ

• This is an equation for a line in the space of , specified
by the weights and threshold .θ

u

w

what is this?

u2

u1

Decision boundary in two dimensions

40

v

w2w1
θ

u1 u2

w

u

w ⋅ u > 0

• Let’s start by looking at the case where θ = 0

 v = F (w ⋅ u)

w ⋅ u = 0

• The decision boundary is given by

• This is the set of all vectors u that have
zero projection along w.

All vectors on a line going through the
origin and perpendicular to w !

• The neuron now fires when the projection of
along is positive

w ⋅ u > 0

u

w

Classification in two dimensions

41

• Let’s look at this for a few simple cases in two dimensions

w = 1 , 0()
θ = 0

u2

u1

u2

u1

w = 1 , −1()
θ = 0

Classification in two dimensions

42

• Now let’s look at the case where θ ≠ 0

v

w2w1
θ

u1 u2
 v = F (w ⋅ u −θ)

• Now the decision boundary is
w ⋅ u = θ

• This is the set of all vectors whose
projection along is given by .

w

u
θ

u2

u1

wθ = 0

u2

u1

wθ ≠ 0

Classification in two dimensions

43

u2

u1

• Let’s calculate the weight vector that gives
us the decision boundary shown below. Assume .

w = w1 , w2()

θ = 1

b

a

 v = F (w ⋅ u −θ) The decision boundary is
w ⋅ u = θ

We have two points on the decision
boundary we know, and two unknowns…

ua = a , 0()

ub = 0 , b()

ua ⋅
w = θ

ub ⋅
w = θ

Learning classification in higher
dimensions

44

• In two dimensions, you can basically look at the data and
decide where the decision boundary should be.

• But in higher dimensions this is a hard
problem.

u2

u1

Perceptron learning

45

• How would we find the weight vector w that separates images of
dogs from images of cats?

v

w

Low-dimensional

v

w2w1
θ

u1 u2

High-dimensional

Perceptron learning rule

u2

u1

Generic	images	sources	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use

Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons

46

MIT OpenCourseWare
https://ocw.mit.edu/

9.40 Introduction to Neural Computation
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

