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Game plan for Lectures 14 – 18 
Examine the computational properties of 

networks of neurons 

• Rate models 
• Feed-forward neural networks (Perceptrons) 

• Matrix operations 
• Basis sets 
• Principal components analysis 

• Recurrent Neural Networks 
• Line attractors in short term memory 
• Hopfield networks 
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Learning Objectives for Lecture 14 

• Derive a mathematically tractable model of neural networks 
(the rate model) 

• Building receptive fields with neural networks 

• Vector notation and vector algebra 

• Neural networks for classification 

• Perceptrons 
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Neural Network Models 
• We are going to examine some of the computational 

properties of networks of neurons. 

• Our first step is to derive a simplified mathematical model of 
neurons that we can study analytically. 

Why would we want to do this? 

• For example, we approximated the detailed spiking properties 
of neurons (HH model) with an integrate & fire (IF) model. 

• This is not enough of a simplification to develop an analytical 
model of neural circuits. 
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Rate models 
• Let’s start with two neurons, an input neuron that synapses with 

weight w onto an output neuron. 

• We are going to ignore spike times, and describe the inputs 
and outputs of our neurons simply as firing rates. 

• In the simplest case… linear neurons! v = wu 

How can we justify this? 

input neuron 

u = firingrateof input neuron 

w = synaptic strength (weight) w 
v = firingrateof output neuron 

output neuron 

u

v 
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Rate models 

• Let’s examine the response of the output neuron to 
a single input spike. 

input spike 

e− t /τ s Ĝ 
syn (t) = Gmax Ĝ 

syn (t) 

post-synaptic conductance Î  syn (t) = Ĝ 
syn (t)[V − Esyn ] 

Ignore synaptic saturation 

input neuron 
Now write Î  syn (t) = wK(t) 

w 

u

v 
where K(t) is a kernel of unit area 

output neuron 1 e−t /τ s K(t) = area =1 
τ s 6 



        

 

 

          

   

        

 

Rate models 
• How do we get the response to multiple input spikes? 

Input spike train input 
spikes 

ρ(t) = ∑δ (t − ti ) 
i Isyn (t) 

• We convolve the input spike train with the synaptic kernel ! 

But what is this? 
input neuron 

Isyn (t) = wK ∗ρ(t) 

• If K is a kernel with area normalized to one, then… 
w

u

v 
K ∗ρ(t) = u(t) 

output neuron 
is just the firing rate of the input neuron! 
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Rate models 
• Thus, we can write presynaptic firing rate as 

u 

v 

input neuron 

output neuron 

w 

u(t) = K ∗ρ(t) 

u(t) = K ∗ρ(t) K 

ρ(t) = δ (t − ti ) 
i 
∑ 

Isyn (t) = w K ∗ ρ(t) 
= wu(t) 

pulse_of_firing_spikes.m 
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Rate models 
• Now, how about the firing rate of the output neuron? 

• You remember that when you injected a constant current into 
our Integrate and Fire model… 

The steady-state firing rate of the neuron had a threshold current below 
which the neuron would not spike, and some increasing f.r. above 
threshold. 

F(I ) 

input neuron I 

w 

u

v 
• In general, we can write the output firing rate 

of our model neuron as: 
output neuron 

v = F[Is ] = F[wu] 9 
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Linear rate models 
• We will now consider an even greater simplification of our 

neurons… assume they are linear. 
F(I ) 

F[ ]x = x 

We will come back to non-linear neurons 
shortly… they will be very important. 

• Of course real neurons can’t have negative firing 
input neuron u

v 

rates, but we can gain a lot of insight using this 
approximation. 

w • Thus, we can write the output firing rate of our 
linear neuron as: output neuron 

v = wu 
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Multiple inputs 
• What happens when our output neuron has many inputs? 

u1 u2 u3 u4 u5 

1 2 3 4 5 

• The total input to our neuron is a sum 
of all the different inputs weighted by 
their synaptic strength! w1 

Isyn = w1u1 + w2u2 + w3u3 + … 

• The steady-state response of our linear 
neuron is now: 

v = wbub ∑ 
11 b 



      
  

    

    

  

Learning Objectives for Lecture 14 

• Derive a mathematically tractable model of neural networks 
(the rate model) 

• Building receptive fields with neural networks 

• Vector notation and vector algebra 

• Neural networks for classification 

• Perceptrons 
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How to build a receptive field 
• We can see that the choice of weights allows us to 

specify the receptive field of our output neuron 

G(x) 

x 

1 2 3 4 5 

−1 

0 0 

2 
−1 v = ∑wbub r = G(x)I(x) 

b ∫ 
v 

w = [0 , −1 , 2 , −1 , 0 ] 
13 



          

 

How to build a receptive field 
• We can even build 2D receptive fields with the same 

formalism. 

y 

x 

v = ∑wx,y ux,y 
x,y v 

G(x, y) 

w 
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Linear algebra detour 
• Mathematically, we have described the response of our 

linear neuron as 
u 1 2 3 4 5 

v = ∑wbub 
b 

w 
• We are going to start using vector and 

matrix notation to describe the properties v 
of networks 

• …because it is much more compact and powerful 

• We have to take a short detour to learn some linear 
algebra. 
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Learning Objectives for Lecture 14 

• Derive a mathematically tractable model of neural networks 
(the rate model) 

• Building receptive fields with neural networks 

• Vector notation and vector algebra 

• Neural networks for classification 

• Perceptrons 
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Linear algebra detour 
• A vector is a collection of numbers. 

• The number of numbers in the collection is called the 
dimensionality of the vector. x̂2 

vector components 
• If there are two or three numbers, we can or elements 

draw a vector as a position, or direction, 
in space. x x = (x1 , x2 ) x = (x1 x2 ) row vector 

x̂1 (0 , 0) 
x = 

⎜ ⎟⎟⎠ 
⎜
⎝ 

⎞ ⎛  x1 
column vector R2 

x2 
17 



  

 

 
 

 

Vector sum 
• Sum of two vectors 

⎛ ⎛ ⎛ ⎞ 
⎟
⎟
⎟
⎟ 
+ 
⎜
⎜
⎜
⎜ 

⎞ x1 + y1 

x2 + y2 

... 

x1 

x2 

... 

y1 

y2 

... 

⎜
⎜
⎜
⎜ 

⎜
⎜
⎜
⎜ 

⎟
⎟
⎟
⎟ 

  x + y = = resultant 
  x + y xn + yn xn yn ⎝ ⎝ ⎝ ⎠ ⎠ x 

Element-by-element addition y 

⎞ 
⎟
⎟
⎟
⎟ 
⎠ 
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Vector products 
• There are several ways of taking the product of two 

vectors 
• Element-by-element product 

• Inner product 

• Outer product 

We will cover this later 

• Cross product 

Important in physics, but we won’t cover this. 
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Vector products 
• Element-by-element product (Hadamard product) 

⎛ ⎛ ⎞ 
⎟
⎟
⎟
⎟ 
 
⎜
⎜
⎜
⎜ 

⎛ ⎞ 
⎟
⎟
⎟
⎟ 

= 
⎜
⎜
⎜
⎜ 

⎞ 
⎟
⎟
⎟
⎟ 

x1 

x2 

 

y1 

y2 

 

x1y1 

x2 y2 

 

⎜
⎜
⎜
⎜ 

  x  y = 

xn yn xnyn ⎝ ⎝ ⎠ ⎝ ⎠ ⎠ 

• In MATLAB®, the element-by-element product is x.*y 

20 



• Inner product or dot product

Vector products

21

 
x ⋅ y = x1y1 + x2y2 + ... + xnyn

= xiyi
i=1

n

∑ = scalar

 
x ⋅ y = y ⋅ x

Some properties…
commutative

 

x =

x1
x2

xn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

y =

y1
y2

yn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 
w ⋅ x + y( ) = w⋅ x + w⋅ y

distributive

 a
x( ) ⋅ y =a x ⋅ y( )

linearity



• Inner product in matrix notation

Vector products
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x ⋅ y =

 
x1 x2  xn( )

 

y1
y2

yn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1   x   N N   x   1

= scalar

1 x   1

• In MATLAB®…
x = [1; 2; 3]; % column vector (1 x 3)
y = [2; 4; 6];  % column vector (1 x 3)
z = x’ * y; % ‘ means transpose

% row*column vector (1x3)*(3x1)



• Dot product of a vector with itself

Vector products
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x ⋅ x = xi xi
i=1

n

∑  =
x 2

is the ‘norm’ or ‘magnitude’ of the vector
 
x

 

x = xi xi
i=1

n

∑ Pythagorean theorem



• A unit vector has length 1.

Unit vector

24

• We can express any vector as a product of a length 
times a unit vector:

 
x = x x̂

x̂

x̂ = 1

 
x̂ = 1
x
x

• We can make a unit vector out of any vector

x̂ ⋅ x̂ = 1



Projection

25

 =
!y cosθ

x̂

 
y

θ x̂

 
y

θ

 
y

 
y ⋅ x̂( ) x̂

Find the component of vector      in the direction of  vector     
.

 
y

x̂

= scalar times unit vector

‘Scalar projection’ of       onto x̂ 
y

Let      be a unit vector.x̂

 
!y ⋅ x̂

‘Vector projection’ of       onto ̂x 
y



• Dot product is related to the cosine of the angle 
between two vectors

Geometric intuition of dot products
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x ⋅ y  =

x y cosθ

 
x

 
y

θ

 
cosθ =

x ⋅ y
x y

• If x and y are unit vectors, then…

x̂ ⋅ ŷ = cosθ



• Two vectors are orthogonal (perpendicular) if and only 
if their dot product is zero.

Orthogonality

27

 
x

 
y

θ = 90o
 
x ⋅ y = x y cosθ

 
x ⋅ y = 0

cos90o = 0

• The projection of y onto x is zero.

• The vector projection of y along  x is the zero vector.



• The dot product is related to the statistical correlation 
between the elements of the two vectors

‘Correlation’ intuition of dot product

28

 
cosθ =

y ⋅ x
x y

=
yixi

i
∑
xixi

i
∑ yiyi

i
∑

Bounded between -1 and 1



• The response of a neuron is the dot-product of the stimulus 
vector with the weight vector (receptive field).

Optimal stimulus

29

1 2 3 4 5

v

I(x) or ub

x

v = wbub
b
∑

 v = w ⋅ u

• Thus, for a given amount of power in the stimulus                 , the 
stimulus that has the best overlap with the receptive field (                  
) produces the largest neuronal response.cosθ = 1

 a
2 = u 2

 =
w u cosθ

 
u = aŵ

• We now have a definition of the ‘optimal stimulus’:



Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks 

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons

30



Classification

31

• A general computational problem solved by brain 
circuits is that of classification.

• Feedforward circuits can be very good at classification

o a friendly dog or a wolf

o an edible object or a poisonous one

• Does that visual input represent a house cat or a tiger

sensory	inputs

‘dog’ ‘cat’ ‘elephant’



Object recognition in human cortex

32Quiroga et	al	Nature	2005Recordings in Right Anterior Hippocampus

Figure	removed	due	to	copyright	restrictions.	See	Lecture	14	video	or	Figure	1	in	Quiroga,	R.Q.,	et	al.	
“Invariant	Visual	Representation	by	Single	Neurons	in	the	Human	Brain.”	Nature 435	(2005):	1102-1107.

https://www.nature.com/articles/nature03687


Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks 

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons
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Perceptrons

34

• A central feature of classification is decision making.

• How do we make a neuron that fires when it sees a dog, but 
does not fire when there is no dog?

• How does a neural circuit make a decision?

• Classification problem in one dimension: one input neuron 
whose firing rate is proportional to a feature - ‘dogginess’.

dogs
non-
dogs

u *

-There exists a ‘classification boundary’ in stimulus space 
that separates dogs from non-dogs.

Spike threshold!

‘dogginess’0
u

u

v
w

‘dog!’

# 
observations ‘dogginess’

Generic	images	sources	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use


Binary threshold unit

35

• For a perceptron, we make a simplified model of a neuron 
that is very good at making decisions:

F(x) = step(x)

Thus, the output neuron begins to fire when the input neuron has a 
firing rate greater than the ‘decision boundary.’

wu >θNeuron fires when the input

v = F(wu −θ )
Theta is the threshold, not an angle.

v

wuθ

step(x)

x

uth = θ /w



Setting the weight

36

uth = θ /w

• To classify, we need to learn the right to make uth = u *w

(‘dogginess’)

0

# 
observations

u

non-dogs
dogs

u *
u

v

‘dogginess’

w
‘dog!’

0 wuθ

uth > u *

small w

0 wu

u *

θ

uth < u *

big w

θ0 wu

u *

uth = u *

w just right

u *



Setting the weight

37

• To classify, we need to learn the right to make uth = u *w

0 wu

u *

θ

uth > u *

dogs
non-
dogs

0 wu

u *

θ

uth < u *

θ

dogs
non-dogs

0 wu

u *

uth = u *

Error: Dogs classified as                
non-dogs

⇒Make w bigger

Error: Non-dogs classified 
as dogs

⇒Make w smaller



Decision boundary in two dimensions

38

• Sometimes classification has to be done on the basis of many 
features, not just one.

u2

u1

 v =
w ⋅ u

w2w1

u1 u2dogs

bad-breath

furry

non-dogs

Generic	images	sources	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use


Decision boundary in two dimensions

39

• Let’s look at the case where our neuron gets two inputs

 v = F ( w ⋅ u −θ )

 
w ⋅ u −θ = 0

 
w ⋅ u = θ

• Now the decision boundary looks different…

w1u1 +w2u2 = θ

• This is an equation for a line in the space of      ,  specified 
by the weights       and threshold     .θ

 
u

 
w

what is this?



u2

u1

Decision boundary in two dimensions

40

v

w2w1
θ

u1 u2

 
w 

u

 
w ⋅ u > 0

• Let’s start by looking at the case where θ = 0

 v = F ( w ⋅ u)

 
w ⋅ u = 0

• The decision boundary is given by

• This is the set of all vectors u that have 
zero projection along w.

All vectors on a line going through the 
origin and perpendicular to w !

• The neuron now fires when the projection of  
along       is positive  

w ⋅ u > 0
 
u

 
w



Classification in two dimensions

41

• Let’s look at this for a few simple cases in two dimensions

 
w = 1 , 0( )
θ = 0

u2

u1

u2

u1

 
w = 1 , −1( )
θ = 0



Classification in two dimensions

42

• Now let’s look at the case where θ ≠ 0

v

w2w1
θ

u1 u2
 v = F ( w ⋅ u −θ )

• Now the decision boundary is  
w ⋅ u = θ

• This is the set of all vectors      whose 
projection along      is given by    . 

w
 
u
θ

u2

u1

 
wθ = 0

u2

u1

 
wθ ≠ 0



Classification in two dimensions

43

u2

u1

• Let’s calculate the weight vector                       that gives 
us the decision boundary shown below.  Assume             .

 
w = w1 , w2( )

θ = 1

b

a

 v = F ( w ⋅ u −θ ) The decision boundary is  
w ⋅ u = θ

We have two points on the decision 
boundary we know, and two unknowns…

 
ua = a , 0( )

 
ub = 0 , b( )

 
ua ⋅
w = θ

 
ub ⋅
w = θ



Learning classification in higher 
dimensions

44

• In two dimensions, you can basically look at the data and 
decide where the decision boundary should be.

• But in higher dimensions this is a hard 
problem.

u2

u1



Perceptron learning

45

• How would we find the weight vector w that separates images of 
dogs from images of cats?

v
 
w

Low-dimensional

v

w2w1
θ

u1 u2

High-dimensional

Perceptron learning rule

u2

u1

Generic	images	sources	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use


Learning Objectives for Lecture 14

• Derive a mathematically tractable model of neural networks
(the rate model)

• Building receptive fields with neural networks 

• Vector notation and vector algebra

• Neural networks for classification

• Perceptrons
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