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Game plan for Lectures 11, 12, and 13 —
Develop a powerful set of methods for
understanding the temporal structure of signals

Fourier series, Complex Fourier series, Fourier transform,
Discrete Fourier transform (DFT), Power Spectrum

Convolution Theorem
Noise and Filtering

Shannon-Nyquist Sampling Theorem

—  https://markusmeister.com/2018/03/20/death-of-the-sampling-theorem/

Spectral Estimation

Spectrograms

Windowing, Tapers, and Time-Bandwidth Product
Advanced Filtering Methods


https://markusmeister.com/2018/03/20/death-of-the-sampling-theorem/

Nyquist-shannon theorem

* How do we ensure that the sampling rate is greater than
twice the bandwidth of the signal?2B

* You don't want to sample at unnecessarily high

frequencies because:
— High-speed analog to digital converters are expensive
— Large data files are computationally expensive to process and store



Nyquist-shannon theorem

* How do we ensure that the sampling rate is greater than
twice the bandwidth of the signal?2B

1. Use your understanding of the problem you are studying to
estimate the highest frequencies you need to keep.

— For example, the highest important frequency for recording spike waveforms is 5-
10kHz

2. Use a low-pass (anti-aliasing) filter to cut out frequencies higher
than the highest frequencies of interest.
— For example, use a low pass filter that cuts off above 10-15 kHz

3. Sample at 2-4 times the low-pass filter cutoft.
— For example, sample at 20-40 kHz



Spectral estimation

* A common problem is to find a small signal in noise
— This can be a challenge

y(t)=0.1*sin(27 £1)
6

Powerspec_osc_in_noise.m



[Line noise removal

* Another common problem is to remove a small periodic noise in
your signal.

Periodogram

SCH =Y (f) “

«  While the periodogram is a terrible spectral estimator for non-
periodic broadband signals, it is a great estimator for perfectly
stationary single-frequencies... like contamination from 60Hz.

 So, if you have a single offending frequency component...

Off with its head!



[Line noise removal

e Just find those lines in Y(f) and set them to zero!

« Then inverse FFT Y(f) to get the cleaned up signal...

X 10° Power spectral density

/ 60 Hz noise gone!
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Learning Objectives for Lecture 13

Brief review of Fourier transform pairs and convolution
theorem

Spectral estimation
— Windows and Tapers

Spectrograms

Multi-taper spectral analysis
— How to design the best tapers (DPSS)
— Controlling the time-bandwith product

Advanced filtering methods



Learning Objectives for Lecture 13

« Brief review of Fourier transform pairs and convolution
theorem



Fourier transform pair

Square pulse
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Discrete Fourier transform

Square-windowed cosine

g(t)=square  x(t)=cos(2m fit)

cos_Gauss_pulse.m

g(1) FWHM=200 ms G(f)
x(1) Freq = 20 Hz
X(f)
y(t) Y(f)
y(t)=g(t)x(t) Y(f)=G(f)*X(f)
Product in the time-domain Convolution in the frequency-

domain!



Using the Convolution Theorem

Gaussian-windowed cosine

Cos_Gauss_pulse.m

0 width=200 ms G(f)
Freqg = 20 Hz
x(1) q X()
y(?) Y(f)
y(t)=g(1)x(z) Y(f)=G(f)*X(f)
Product in the time-domain Convolution in the frequency-

domain!



Discrete Fourier transform

* Square vs. Gaussian windowing cos_Gauss_pulse.m

SCH =Y (f SCH=|Y ()

101og,, S(f) 101og,, S(f)



Spectral estimation

e This 'kernel’ is called the Dirichlet Kernel

e The finite time-window introduces two errors into
the spectral estimate.

> €

Narrowband bias —

Broadband bias —

Large sidelobes



Learning Objectives for Lecture 13

« Spectral estimation
— Windows and Tapers



Spectrum of speech signals

glottal pulses

What will the spectrum look like?

harmonic stack ~ What causes these broad bumps?
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Spectral estimation

« Say we want to find the spectrum S( f) of a signal y(t).

« Often we only have short measurements of y(t) (e.g. trials)

Trial 1 Trial 2 Trial 3 Trial 4
S(f) S, (f) S,(f) S,(f)

We can just average!

n 1 L~
S(f)—NZ,SL-(f)



Spectral estimation

N 1 A
S(f)—ﬁ;Si(f)

S(f) S,(f) S, (f) S, (f) S.(f)

windowing

« We could just take the FFT of each piece.

— But we know that a 'square windowing’ means that the spectrum
becomes convolved with the spectrum of the square window!
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Spectral estimation

« We will multiply each window by a smooth function called a
‘taper’.

R 1 &~
S(f)=ﬁ§,Si(f> SO S S S» S,



Learning Objectives for Lecture 13

« Spectrograms



Time-varying spectrum (or
Spectrogram)

« Compute the spectrum in short time windows of length T

— slide the window in small steps of size At.

VASYAR

$(f) . .
. S, f)=S(f)

5 (f)
50 where t. =1 At

$,(f)
S.(f)
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Spectrogram of speech signals

©

WSpecgram.m



What you see depends on the taper!

« How do | choose the length of the window?
« What kind of taper do | use?



Learning Objectives for Lecture 13

* Multi-taper spectral analysis
— How to design a taper (DPSS)



Tapers

* |s there a perfect taper?
No, because a function that is strictly limited to a time window
between —T/2 to T/2 has a spectrum that extends to infinity in
frequency.

Another problem with tapering is that, when we make a
‘smooth’ function that goes to zero at the edges, we lose data!



Tapers

* First we consider the spectral concentration problem

We want to find a strictly time-localized function [-T/2,T/2]
whose Fourier Transform is maximally localized within a
finite window in the frequency domain [-W,W].

—_— —2W
«— | —>

w(t)

dpss_taper.m.m



spectral concentration.

[lu) dr

[lueH) daf

—0

A=

Maximizing A gives a set of
k=2WT-1 functions called
Slepian functions for which A
is very close to 1.

... also called discrete
prolate spheroid sequence

(dpss)

Tapers

We want to find a function of time w(t) that maximizes the

U(f) is the E.T. of w(t)
U(f)= [ wt)e>" dr

—> «—2W
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DPSS Tapers

« The set of dpss functions is also orthogonal.

>

p=3, k=5

2w

¢ 5 plot_all_dpss.m

|50dB

Frequency (Hz)

* Because they are orthogonal, each will give an independent

estimate of the spectrum!
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Multi-taper spectral estimation

Select a time window width T (temporal resolution).
Select a time-bandwidth product p=WT (i.e. set the frequency resolution).
Compute the set of set of dpss tapers using T and p=WT

Estimate the spectrum using each of the k= 2*p-1 tapers

2

S, (f)=

N
D w, (y()e !
=1

Average the estimates to get the spectrum!

1w A
S(f)=z;Sn(f)

You get multiple spectral estimates from the same piece of data.
Which means you can get error bars !



Learning Objectives for Lecture 13

— Controlling the time-bandwith product



Time-bandwidth product

«  With a larger p, you get more suppression of the side-lobes, and
you increase the bandwidth.

But you also get more tapers, you get more spectral estimates from
the same piece of data, and more averaging.

k=2WT —1
%‘ I@ p=1.J5
T =100ms p=1.5
=5
l:1OHZ g
T _
p=>5
— <_k:9

Dpss_comp_WT.m



Time-bandwidth product

T =50ms
2W =60 Hz
p=15 k=2

T =8ms
2W =375 Hz ]
p=15 k=2

demo_specgram.m



Time-bandwidth product

« There is a fundamental limit to the resolution in time and frequency.
WT > 1

* If you want a temporal resolution of T, the bandwidth has to be

greater than W>1/T W =1/T forasquare taper

W >1/T for 'narrower’ tapers

* If you want a bandwidth of W, the time window has to be greater
than 7 > %?V

p=4
p=WT=1 p=2
2W k: k=3 k=7
! T -
short time longer time T

large bandwidth smaller bandwidth p=1.5,2,25,3,4 34



Learning Objectives for Lecture 13

« Advanced filtering methods



Filtering

« Sometimes offending noise is not a single line. But if it is well
enough separated from your signal, then you can use filtering.

«  We talked about using convolution for high-pass or low-pass filtering,
but there are very powerful tools built into MATLAB® for this.



High-pass filtering

filter_demo.m

Fnyg=Fs/2.; % Nyquist frequency (samples/sec)
cutoff =500; % Set cutoff frequency (Hz)

Whn = (cutoff/Fnyq);

[b,a]= butter(4, Wn, 'high'); % Butterworth high-pass
Data = filtfilt(b,a,Dataln); %Run the filter!



Low-pass filtering

« Sometimes offending noise is not a single line. But if it is well
enough separated from your signal, then you can use filtering.

@ filter _ demo.m

Fnyg=Fs/2.; % Nyquist frequency

cutoff =2000; % Set cutoff frequency

Whn = (cutoff/Fnyq);

[b,a]= butter(4, Wn, 'low'); % Butterworth low-pass
Data = filtfilt(b,a,Dataln); % Run the filter!



Band-pass filtering

filter_demo.m

Fnyg=Fs/2.; % Nyquist frequency

cutoff = [4000 5000]; % Set cutoff frequency
Whn = (cutoff/Fnyq);

[b,a]= butter(4, Wn); % Butterworth band-pass
Data = filtfilt(b,a,Dataln); % Run the filter!



Band-stop filtering

©

_ filter_demo.m
Fnyg=Fs/2.; % Nyquist frequency

cutoff = [3000 6000]; % Set cutoff frequency

Whn = (cutoff/Fnyq);

[b,a]= butter(4, Wn, 'stop'); % Butterworth band-stop
Data = filtfilt(b,a,Dataln); % Run the filter!



MATLAB® Filter Visualization Tool

B O O Filter Visualization Tool - Figure 3: Magnitude Response (dB)
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MATLAB® Filter Designer

filterDesigner.m

Courtesy of The MathWorks, Inc. Used with permission. MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered
trademarks of their respective holders.
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Learning Objectives for Lecture 13

Brief review of Fourier transform pairs and convolution
theorem

Spectral estimation
— Windows and Tapers

Spectrograms

Multi-taper spectral analysis
— How to design the best tapers (DPSS)
— Controlling the time-bandwith product

Advanced filtering methods
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