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Electrical recordings of brain activity 

• Electrical recordings in the brain are made 
with electrodes. 

• Recordings can be made inside of single cells 

• Most often, in behaving animals, recordings 
are made of signals outside of neurons. 
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Electrical recordings of brain activity 
What is the origin of ‘extracellular’ electrical signals? 

• Voltage measurements are always 
voltage differences 

• Extracellular voltages are always 
measured between the signal 
electrode and a local ground or 
reference electrode. 

• Voltage differences between the 
signal and ground electrode are 
always associated with current flow 
through the extracellular space. 

• Back to Ohm’s Law! 
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Origin of extracellular signals 
What happens to the voltage outside our model neuron during an 
action potential? 

Na+ 
Na+ 

• Let’s start with our spherical neuron 

Na+ Na+ 
• There is no spatial separation between 

current flows into the neuron and current 
intracellular flow out of the neuron. Thus, no current 

flow outside the neuron. 
GNa 

INa 

ENa 

• And thus no extracellular voltage changes! extracellular 
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Origin of extracellular signals 
What happens to the voltage outside our model neuron during an 
action potential? 

• Now let’s see what happens when we add a 
dendrite. 

Na+ 

Na+ Na+ 

Na+ 

• Now there is extracellular current flow 

GNa 
INa ΔV = R I ext ext ext Rext ENa 

soma ΔVext Iext 
extracellular 

• And extracellular voltage changes! 5 



          
 

 

 

 

  

    
 

   
  

     
  

 

 

Current sources and sinks 
What happens to the voltage outside our model neuron during an 
action potential? 

Na+ 

Na+ Na+ 

Na+ 

• Extracellular current flows from current sources to 
current sinks 

intracellular 

GNa Current sources are regions INa of higher extracellular Rext potential 

Current sinks are regions of ΔVext 
lower extracellular potential 

ENa 

extracellular 

Current source Current sink 6 



	

 

 
 

 

   

  

 

 

 

     

	 	 	 	 	 	 	
	 	
	 	 	 	 	 	 	

	 	 	

Relation between membrane potential and 
extracellular potential 

ΔV = R I = R (I + IR ) ext ext ext ext c 

= Rext 

⎡ 
⎢
⎣ 
C 

dV ⎤ 
⎥
⎦ 

m + G(V ) m − EL dt 
Figure removed due to copyright restrictions. See Henze,	 dV 
D.A.,	 et al.	 “Dopamine 	Increases 	Excitability 	of 	Pyramidal m ΔV ≈ R C Neurons in Primate Prefrontal Cortex.” J. Neurophys.	 84 ext ext 
no. 6 (2000): 2799-2809. dt 

V m 

Henze et al,	 2000 

Extracellular voltages look a lot like the ext extracellular 

GNa 

soma 

ENa 

Rext 

ΔVext I

derivative on membrane potential! 7 



          

 

  

Origin of extracellular signals 
What happens to the voltage outside our model neuron during a 
synaptic input? 

Excitatory synapse 

Current sink Current source 

Vext (t) Vext (t) 

time time 
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Origin of extracellular signals 
What happens to the voltage outside our model neuron during a 
synaptic input? 

Inhibitory synapse 

Current source Current sink 

Vext (t) Vext (t) 

time time 
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Local Field Potentials 
• Synchronous synaptic input to large populations 

of neurons 
• Depends on linear summation 

– morphology is important 

Laminar 	morphology Nuclear morphology 

– large LFP – small LFP 
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Electrical recordings of brain activity 

SAMPLING 

-
+ 

surface of 
brain 

extracellular 
recording 
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ground 
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Analog to 
Digital 

Converter 
(ADC) 

The analog to digital converter samples the voltage from the amplifier at 
regular intervals in time and stores the result in the computer memory. 

Δt sampling frequency, fs = 
1 
Δt 

The rate at which the samples are acquired is called the sampling rate or 
sampling frequency. 
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Two kinds of signals 
• Recording of neural activity in hippocampus of a running rat. 

200ms 

• Slow - Local Field Potentials (LFP) 
– Synaptic currents 

• Fast - Spikes 
– Action potentials 
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Low-pass filtering 
Low-pass filtering can be done by convolving 

the signal with a kernel like this. 

area = 1 
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Explanation of low pass filter 
Kernel 

0 0.5 0.5 0 Signal 

1 3 1 3 1 3 5 3 5 3 5 

0 1.5 0.5 0 Product 

∑= 2 Sum 

2 

Filtered output 
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Explanation of low pass filter 
Kernel 

0 0.5 0.5 0 Signal 

1 3 1 3 1 3 5 3 5 3 5 

0 0.5 1.5 0 Product 

∑= 2 Sum 

2 2 2 2 2 

Filtered output 
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Explanation of low pass filter 
Kernel 

0 0.5 0.5 0 Signal 

1 3 1 3 1 3 5 3 5 3 5 

0 1.5 2.5 0 Product 

∑= 4 Sum 

2 2 2 2 2 4 4 4 4 4 4 

Filtered output 
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High-pass filtering 
High-pass filtering can be done by convolving 

the signal with a kernel like this. 

1 

area = -1 

Total area = 0 
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Spike detecton 
• If you are recording from only a single neuron, it is easy 

to extract spike times… 

Spike detection threshold 

t0 
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Spike trains 
• Representation of all the spikes that a neuron generates in a period 

of time of interest 

Spike detection threshold 

t1 t2 t3 t4 t5 t6 

• We can represent a spike train as a list of spike times 

ti for i =1 to N spikes 
19 



      

           

  

Spike trains 
• Spike trains can also be represented a sum of delta 

functions. 
δ (t − t6 ) 

t1 t2 t3 t4 t5 t6 

ρ(t) = δ (t − t1) + δ (t − t2 ) + δ (t − t3) 
+ δ (t − t4 ) + δ (t − t5 ) + δ (t − t6 ) 

ρ(t) = δ (t − ti ) 
i 
∑ 

• ρ(t) can be thought of as the derivative of a spike count function 

T 

∫ ρ(t)dt = N (# spikes) 
0 

ρ(t) has units of spikes per second 

N(t) 

t 
1 
2 
3 
4 

0 
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Tuning curves 
• Simple cells in primary visual cortex of the cat are 

responsive to some orientations, but not others. 

These neurons show ‘orientation tuning.’ 
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Tuning curves 

Hearing / ear diagram removed due to copyright	 restrictions.	 Unfolded cochlea figure removed due to copyright restrictions. 
Source unknown. Source unknown. 

Auditory neurons show frequency tuning 22 



         
      

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

Tuning curves 
• Relation between spiking activity of a neuron in primary 

motor cortex and the onset of the arm movement. 

Figures removed due to copyright restrictions. See Figs. 1 & 3 in Georgopoulos,	 A.P.,	 
et al.	 “On the Relations Between the Direction of Two-Dimensional 	Arm 	Movements 
and Cell Discharge in Primate Motor Cortex.” J. Neurosci.	 2 no.	 11(1982): 1527-37. 
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Tuning curves 
• Relation between spiking activity of a neuron in primate 

primary motor cortex and the onset of the arm movement. 

Figures removed due to copyright restrictions. See Figure 4 in Georgopoulos,	 A.P.,	 et 
al.	 “On the Relations Between the Direction of Two-Dimensional 	Arm 	Movements 	and 
Cell Discharge in Primate Motor Cortex.” J. Neurosci.	 2 no.	 11(1982): 1527-37. 

M1 neurons show tuning for movement direction. 
24 



     
          

 

     

 

Quantifying firing rates 
• Method 1: Trial average firing rate. 

– Count the number of spikes in each trial. Average over trials. 

Stimulus time 
onset offset 

Tr
ia

l #
 

1 

2 
3 
4 
5 

T 

= number of spikes on trial i Ni i 
Ni 

R = denotes the average over all trials i 
i T 
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Quantifying firing rates 
• We can get higher temporal resolution by breaking the 

rate calculation into smaller units in time. 

time Stimulus 
onset offset 

Tr
ia

l #
 

1 

2 
3 
4 
5 

ΔT 
Bin 1 2 3 4 

Trial-average rate in time bin j = number of spikes on trial i in bin j Ni 

denotes the average over all trials i 
i Rj = 

1 Ni, j i 26 ΔT 



 
    

 

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

Quantifying firing rates 
• Peri-Stimulus Time Histogram (PSTH) 

or Peri-Event Time Histogram (PETH) 

Figures removed due to copyright restrictions. See Figure 2 in Georgopoulos,	 A.P.,	 et 
al.	 “On the Relations Between the Direction of Two-Dimensional 	Arm 	Movements 	and 
Cell Discharge in Primate Motor Cortex.” J. Neurosci.	 2 no.	 11(1982): 1527-37. 

Georgopoulos, 1982 
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Quantifying firing rates 
• The same trick can be used to estimate firing rates in 

continuous spike trains (not associated with trials). 

number of spikes in bin j 

Nj 

ΔT 
Nj Rj = 
ΔT 

The problem with using fixed bins here is that the answer 
depends on where the boundaries are 

28 



  

            
  

     

Quantifying firing rates 
• A continuous measure of firing rate. 

ΔT 

We count the number of spikes in a small window of width ΔT 
and shift the window in smaller steps 

How can we describe this mathematically (you ask)? 
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Quantifying firing rates 
• A continuous measure of firing rate. 

We can write this process down mathematically as follows. 

First, we use the fact that the number of spikes in an interval t1 to 
t2 t2 is given by 

N = ∫ ρ(t)dt 
t1 

t + ΔT /2 
N 1 

R(t) = = ∫ ρ(τ )dτ 
ΔT ΔT t −ΔT /2 

t + ΔT 
2 t − ΔT 

2 t 

30 



  

  

             
         

Quantifying firing rates 
• A continuous measure of firing rate. 

t 
But this is just a convolution! We are convolving our spike train with a 
square kernel of width ΔT . 

Kernel 
< ΔT ⎡ 1 / ΔT if τ ∞ K(τ ) = ⎢

⎢ R(t) = ∫ ρ(t −τ )K(τ )dτ ⎣ 0 otherwise 
−∞ 

Notation 

R(t) = ρ(t)* K 

2 

1
ΔT 

+ ΔT 
2 − ΔT 

2 

area = 1 

31 



  

       

  

       
     

Quantifying firing rates 
• A continuous measure of firing rate. 

Even better is to convolve with a Gaussian kernel 

Kernel 
τ 2 R(t) = ρ(t)* K 1 − 

K(τ ) = e 2σ 2 

σ 2π area = 1 

Gaussian kernel is still averaging - it is just a weighted average, 
with less weight at the edges. 32 



	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

Quantifying firing rates 
• Summary

Figure courtesy MIT Press. From Dayan,	 P. and L. Abbott. Theoretical Neuroscience: Computational and 
Mathematical Modeling of Neural Systems.	 2001.	 
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Key problem 

• You have to choose a timescale to measure the firing rate. 

But you get a different answer for every different timescale! 

σ = 4 ms 

σ = 20 ms 

σ = 100 ms 

Time (ms) 100 ms 

Fi
rin

g
 ra

te
 (H

z)
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Temporal structure of responses 
• Neuronal responses are not static. They have a strong 

temporal structure. 

Recordings from vibrissa cortex in the rat. Response to whisker deflections. 
35 



     
 

    

       

Temporal structure of responses 
• Auditory neurons can be strongly locked to the phase of 

the sound waveform. 

Fi
rin

g 
ra

te
 (H

z)
 

The spike timing is precisely 
controlled. 

The firing rate is rapidly modulated in time. 36 



 
    
           

        
   

           
   

            
      

 

             
        

 

Rate vs timing? 
• Sensory neurons spike more in response to some stimuli than others 

Motor neurons spike more before or during some actions than others 

Therefore, information about a stimulus (or motor action) is carried in the 
numbers of spikes generated. 

• All neurons exhibit temporal modulation of their firing rate (or spiking 
probability per unit time). 

If information is carried in the slow modulations spike probability, we say 
that the information is coded by firing rate. 

‘Rate coding’ 

If information is carried in the fast modulations in spike probability, we say 
the the information is coded by spike timing. 

‘Temporal coding’ 
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Rate vs timing? 
• You may occasionally hear a debate about ‘rate coding’ vs. 

‘temporal coding’. 

• This is a false dichotomy. These are two extremes along a 
spectrum. 

• The brain uses information in spike trains at a fast timescale and 
at a slow timescale. 

• How do we determine what timescales are important? 

We look at what the downstream neurons do with these spikes! 

• What timescale is relevant for the computation being done? 

• What are the biophysical processes in the downstream neurons. 
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