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Hodgkin-Huxley model of action potential
generation

Voltage and time-dependent ion channels are
the 'knobs’ that control membrane potential.
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Removed due to copyright restrictions: Figure 1a: The first intracellular
recording of an action potential, from squid axon. Hausser, M. "The Hodgkin-
Huxley theory of the action potential." Nature Neuroscience 3 (2000).



https://www.nature.com/articles/nn1100_1165
https://www.nature.com/articles/nn1100_1165

Hodgkin-Huxley model of action potential
generation
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This is the total membrane ionic current, and it includes the contribution
from —sodium channels, potassium channels and a ‘leak’ conductance.

The equation for our HH model neuron is

dV (1) — 1)

I (H+C



Voltage and Time dependence

* Voltage and time-dependent ion channels are the 'knobs’ that
control membrane potential.

* H&H studied the properties of K and Na channels in the squid giant
axon. In particular they wanted to study the voltage and time
dependence of the K and Na channels.

Removed due to copyright restrictions: Figure 1a: The
first intracellular recording of an action potential, from
squid axon. Hausser, M. "The Hodgkin-Huxley theory
of the action potential." Nature Neuroscience 3 (2000).

Hodgkin and Huxley, 1938

Tmm diameter!

Image of squid giant axon © Kay Cooper and Roger

Squid diagram from The CellularScale.
Hanlon. Used with permission.

License CC BY-NC-SA.



http://cellularscale.blogspot.com/2013/01/how-big-is-giant-squid-giant-axon.html
https://www.nature.com/articles/nn1100_1165
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Tonic currents
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Removed due to copyright restrictions: Figure 2.6 p. 36 In: Hille, Bertil. lon Channels
of Excitable Membranes (3rd Ed.). 2001, Sinauer / Oxford University Press.



Tonic currents

How do we figure out the contribution of Na and the contribution of K?

lonic substitution (e.g. replace NaCl with choline chloride)

K current

Annotated figure © Hille, Bertil. lon Channels of Excitable Membranes (3rd Ed.). 2001, Sinauer / Oxford University Press. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Tonic currents
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Ionic currents (Voltage dependence)
wwens[ i

I (mA/cm?) I
LT K -~ Na

I, =G, (V)(V—E,) Iy, =Gy W)(V—Ey,)

A A

% G (V)
GK<V>// /
< <€ >

/VEM) v
Y /‘v‘

A
|
1

< \ 4




Ionic currents
(ttme and voltage dependence)
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Annotated figure © Hille, Bertil. lon Channels of Excitable Membranes (3rd Ed.). 2001, Sinauer / Oxford University Press. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Voltage-dependent conductance use voltage sensors
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Voltage-dependent conductance use voltage sensors
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K and Na conductances

We modeled changes in conductance as transitions between ‘closed’

and ‘open’ states of ion channels.

K-conductance
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Gating variables

The activation of both Na and K conductances is
represented by ‘gating variables’ m and n

K-conductance Na-conductance
W4 BO=[O] m(t)4 By, o< [m(0)]
4 i’ Inactivation
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Na
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Sodium channel 1nactivation

HH postulated an additional voltage-dependent
Inactivation gate.
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Sodium channel 1nactivation

Dynamics of inactivation are captured by a new gating
variable 'h’. G, (V.1

dh
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Measuring the parameters

How do we measure inactivation and recovery from inactivation?

1. Hold V,, at different values

L dh
2. Let the Na channels inactivate T,—=h_—h
3. Then measure the Na current! dt
+40mV 1 h (V)
holding
V t- potential measurement
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The sodium conductance

Putting our two Na-channel gating variables together, we get:

The probability of having a Na channel open is:

_ 3 <«—— Note independence
P, =m’h
The sodium conductance is: NOT !
B But it's not so
GNa = GNam3h bad

And the sodium current is:

1, =G, m’h(V-E,)



Putting 1t all together!

Start with initial contition v =y at time step t,

Compute:

> n_(V) and 7 (V) m_(V) and T (V)  h_(V) and 7,(V)
n(t)zn(t—1)+@At m(t)zm(t—1)+d—mAt h(t)zh(t—l)+@At
dt dt dt
I, =Gn*(V-Ey) 1, =Gym’h(V-E,) I, =G,(V-E,)
Total membrane current [ =1 +1, +1,

Compute T, and V,

V)=V -1+ d;;m At



Putting 1t all together!
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Spike refractory period due to sodium
channel 1nactivation
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~ Daiseases related to defects
in sodium channel 1nactivation

Fainting Goats Video from National Geographic




~ Daiseases related to defects
in sodium channel 1nactivation

Hyperkalemic Periodic Paralysis — Hyper PP

See Lecture video to view clip



Structure of Muscle Fiber
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Annotated Figure © Kandel, E.R, J.H. Schwartz, and T.M Jessell. Principles of Neural Science 3rd ed. 1991, McGraw-Hill.
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Muscle Fiber AP Leads to Ca Release in
Myofibrils
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Annotated Figure © Kandel, E.R, J.H. Schwartz, and T.M Jessell. Principles of Neural Science 3rd ed. 1991, McGraw-Hill.
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~ Daiseases related to defects
in sodium channel 1nactivation

Myotonia and Periodic Paralysis are
associated with mutations of the Na channel
(skeletal isoform only)

Figure removed due to copyright restrictions. See Figure 2: Cannon, S. "Sodum Channel Defects in Myotonia and
Periodic Paralysis." Annu. Rev. Neurosci. 19 (1996):141-44.



https://www.annualreviews.org/doi/10.1146/annurev.ne.19.030196.001041
https://www.annualreviews.org/doi/10.1146/annurev.ne.19.030196.001041

Sodium channel mutations

wild-type human M1592V mutation

Figure removed due to copyright restrictions. See Figure 3: Cannon, S. "Sodum Channel Defects in Myotonia and
Periodic Paralysis." Annu. Rev. Neurosci. 19 (1996):141-44.



https://www.annualreviews.org/doi/10.1146/annurev.ne.19.030196.001041
https://www.annualreviews.org/doi/10.1146/annurev.ne.19.030196.001041

~ Daiseases related to defects
in sodium channel 1nactivation

Sea anemone toxin (ATXII, 10uM) partially
blocks sodium channel inactivation.

Figure removed due to copyright restrictions. See Figure 5a: Cannon, S. "Sodum Channel
Defects in Myotonia and Periodic Paralysis." Annu. Rev. Neurosci. 19 (1996):141-64.

Sea anemone image is in the public domain.
Source: heartypanther on Flickr.
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~ Daiseases related to defects
in sodium channel 1nactivation

Sea anemone toxin (ATXII) also prolongs
muscle fiber twitch duration.

Figure removed due to copyright restrictions. See Figure 5b: Cannon, S. "Sodum Channe
Defects in Myotonia and Periodic Paralysis." Annu. Rev. Neurosci. 19 (1996):141-64.



https://www.annualreviews.org/doi/10.1146/annurev.ne.19.030196.001041
https://www.annualreviews.org/doi/10.1146/annurev.ne.19.030196.001041

~ Daiseases related to defects
in sodium channel 1nactivation

Sea anemone toxin (ATXII) prolongs spiking
in muscle fiber.
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Annotated figure © Cannon, S. "Sodum Channel Defects in Myotonia and Periodic Paralysis." Annu. Rev. Neurosci. 19 (1996):141-64. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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~ Daiseases related to defects
in sodium channel 1nactivation

Hypothesis for how persistent sodium leads to persistent

muscle activation.
Motor neuron
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~ Daiseases related to defects
in sodium channel 1nactivation

Hypothesis for how persistent sodium leads to persistent

muscle activation.
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~ Daiseases related to defects
in sodium channel 1nactivation

Hypothesis for how persistent sodium leads to persistent

muscle activation.
Motor neuron
synapse
. Na*
Muscle fiber membrane ’I‘
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~ Daiseases related to defects
in sodium channel 1nactivation

Hypothesis for how persistent sodium leads to persistent

muscle activation.
Motor neuron
M
Muscle fiber membrane
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~ Daiseases related to defects
in sodium channel 1nactivation

Hypothesis for how persistent sodium leads to persistent

muscle activation.
Motor neuron
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~ Daiseases related to defects
in sodium channel 1nactivation

Equivalent circuit model of muscle fiber membrane and T-

tubule.
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Courtesy of Elsevier, Inc., https://www.sciencedirect.com. Used with permission.
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~ Daiseases related to defects
in sodium channel 1nactivation

Hypothesis for how persistent sodium leads to persistent

muscle activation.
Motor neuron
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~ Daiseases related to defects
in sodium channel 1nactivation

Hypothesis for how persistent sodium leads to persistent

muscle activation.
Motor neuron
M
Muscle fiber membrane

I, = K-current into T-tubule
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[K]T < E. is a function of [K];!!
dt <K+
[. =G, (V-FE,)
d[K], “*
<t Kt
dr 5F AKL_ 1 oo KL-IKL
& = volume of T-tubule d  EF ¢ . T,

F = Faraday constant (C/mol)
= 9.6x10* (C/mol) 40



~ Diseases related to defects
in sodium channel inactivation

Computer model of effects of defective Na-
channel inactivation
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Annotated figure © Cannon, S. "Sodum Channel Defects in Myotonia and Periodic Paralysis." Annu. Rev. Neurosci. 19 (1996):141-64. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Failure to inactivate was modeled by
settting h=1 for a fraction of the
channels A1
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~ Daiseases related to defects
in sodium channel 1nactivation

Computer model of effects of defective Na-channel
inactivation showing transition from myotonia to paralysis

Figure removed due to copyright restrictions. Figue 6: Cannon, S. "Sodum Channel
Defects in Myotonia and Periodic Paralysis." Annu. Rev. Neurosci. 19 (1996):141-64.
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