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A mathematical model of a neuron
• Equivalent circuit model
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A neuron is a leaky capacitor

intracellular

extracellular

Ie

C
VmRL

IcIL
IL = membrane ionic current

Ic = membrane capacitive current

3
V
∞
(t) = RL Ie (t)

Vm + τ dVm
dt

= V∞
where   τ = RLC
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Response to current injection

Ie(t) 0
I0

time
0

Vm (t) RL I0

time

  τ = RLC

Let’s see what happens when we inject current into our 
model neuron with a leak conductance.
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A neuron is a leaky capacitor
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Outline of HH model
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Voltage and time-dependent ion channels are 
the ‘knobs’ that control membrane potential.

• Some ion channels push the membrane 
potential positive.

• Other ion channels push the membrane 
potential negative.

• Together these channels give the neural 
machinery flexible control of voltage!
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Where do the batteries of a neuron come from?

1) Ion concentration gradients

2) Ion-selective permeability of ion 
channels
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Neurons have batteries

Time

[K]

[K]out

[K]in

[K]0

[K]∞=[K]0/2

‘Non-selective’ pore
passes all ions
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Neurons have batteries

Why do the ions stop flowing 
from side 1 to side 2?

[K]

[K]out

[K]in
[K]0

Time

‘Ion-selective’ pore
passes only K+ ions

IK (t)

Time

Why does the concentration
stop changing here?
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(a short time)



Neurons have batteries

‘Ion-selective’ pore
passes only K+ ions

IK (t)

time

ΔV=V1-V2

time
0

The voltage difference changes in a 
direction that opposes the flow of ions.

EK
It reaches an ‘equilibrium potential’ at a 
value that gives zero net flow of ionic 
current.

This voltage difference is a 
battery for our model neuron!!
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Neurons have batteries

There will be some electric field strength such that the 
‘drift’ will exactly balance the  diffusion produced by the 
concentration gradient…

K+

K+

K+

K+
K+

K+

K+

E

V(x)

x
Vin

Vout

Nernst Potential
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Neurons have batteries

• Where do the ‘batteries’ of a 
neuron come from?

1) Ion concentration gradients

2) Ion-selective pores (channels)

• How big is the battery (how 
many volts?)

This is determined by a balance 
between diffusion down a concentration 
gradient balanced by ‘drift’ in the 
opposing electric field. 
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Electrodiffusion and the Nernst Potential
One can use Ohm’s law and Fick’s first law to derive the Nernst 
potential

 ITot = IDrift + IDiffusion

— At this voltage, the drift current in the electric field exactly 
balances current due to diffusion

 = 0

IDrift =
Aq2ϕ(x)D
kT

ΔV
L

Ohm’s Law

  
IDiffusion =−AqD ∂ϕ

∂x

Fick’s First Law

  
ΔV =

kT
q
ln ϕout
ϕin

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

at equilibrium
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Derive Nernst potential using the 
Boltzmann equation

The Boltzmann equation describes the ratio of probabilities of a 
particle being in any two states, at thermal equilibrium:

state 1

state 2

Energy

U2

U1

Pstate1
Pstate2

= 0

kT = 0

k =Boltzmann constant (J/K)

T = temperature (K) = 273 + TC

kT = thermal energy (J)
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Pstate1
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Derive Nernst potential using the 
Boltzmann equation

The Boltzmann equation describes the ratio of probabilities of a 
particle being in any two states, at thermal equilibrium:

state 1

state 2

Energy

U2

U1

}kT

Pstate1
Pstate2

> 0

kT > 0

k =Boltzmann constant (J/K)

T = temperature (K)

kT = thermal energy (J)
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Pstate1
Pstate2

= e
− U1−U2

kT
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The Boltzmann equation describes the ratio of probabilities of a 
particle being in any two states, at thermal equilibrium:

Pstate1
Pstate2

≈ 0
Pstate1
Pstate2

= e−2
Pstate1
Pstate2

≈1.0

ΔU >> kT

Derive Nernst potential using the 
Boltzmann equation

state 1

state 2

Energy

U2

U1

}kT
state 1

state 2

Energy

U1

}kT

ΔU = 2kT

U2 state 1 state 2

Energy

U2

U1 }kT

ΔU < kT
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Nernst Potential
We can compute the equilibrium potential using the Boltzmann 
equation:

Pin
Pout

= e
−Uin−Uout

kT
U = qV = electrical potential (J)

q =  1.6x10−19C for monovalent ion

q =  charge of ion
= e

−q(Vin−Vout )
kT
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Nernst Potential
We can compute the equilibrium potential using the Boltzmann 
equation:

kT
q

= 25mV for monovalent ion

Vin −Vout = − kT
q
ln Pin

Pout

⎛
⎝⎜

⎞
⎠⎟

ΔV = Vin −Vout = 25mV ln
Pout
Pin

⎛
⎝⎜

⎞
⎠⎟

ΔV = 25mV ln
K[ ]out
K[ ]in

⎛

⎝⎜
⎞

⎠⎟
= EK

Don’t get confused by this notation. EK is the 
equilibrium potential (voltage) for the K ion. 
‘E’ here does not refer to an electric field.

U = qV = electrical potential (J)

q =  1.6x10−19C for monovalent ion

q =  charge of ion
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−Uin−Uout
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Ion Cytoplasm	
(mM)

Extracellular	
(mM)

Nernst	
(mV)

K+ 400 20 -75

The Nernst potential for potassium

Intracellular and extracellular concentrations of ionic 
species, and the Nernst potential

 
Ek =

kT
q
ln 20
400
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=	25mV	at	300K	(room	temp)
for	monovalent	ion

kT
q

 EK = 25mV (−3.00)=−75mV
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IcIK

EK +
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How to implement an ion specific conductance 
as a battery in our model neuron
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Ion Cytoplasm	
(mM)

Extracellular	
(mM)

Nernst	
(mV)

K+ 400 20 -75

The Nernst potential for potassium

Intracellular and extracellular concentrations of ionic 
species, and the Nernst potential
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K+
K+

K+

K+

=	25mV	at	300K	(room	temp)
for	monovalent	ion

kT
q

 EK = 25mV (−3.00)=−75mV

ΔV =
kT
q
ln

K⎡⎣ ⎤⎦out
K⎡⎣ ⎤⎦in
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Ie

C
VmGK

IcIK

EK +
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How to implement an ion specific conductance 
as a battery in our model neuron



Potassium I-V relation
One of the best ways to study the function of an ion channel is 
to plot the current-voltage relation (I-V curve). This can be 
measured as the current required to hold the neuron at a given 
voltage.

Note that the current reverses at the equilibrium potential, so this 
is often referred to as the ‘reversal potential’

• If you hold the cell below EK, then the 
current will flow into the cell.

For a potassium conductance
• If you hold the voltage above the 

equilibrium potential, K current will flow out 
through the membrane (positive current) IK

V

24
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I-V relation

IK =GK (V − EK ) , GK = R
−1
K

This relation turns out to be monotonic and 
roughly linear for ion channels in the open 
state. So we can write:

Vm

We can model this as a battery in series with a resistor! Why?

IK

V

EK

25
driving potential ΔV = EK

 
ΔV =

IK
GK

 
Vm = EK +

IK
GK

 IK =GK (V−EK )



Our equation is now:

 
IK +C dV

dt
= Ie

Ie

C
VmGK

IcIK

EK +

  
V + τ

dV
dt

= EK + RK Ie

GK (V − EK )+C dV
dt

= Ie ,       RK =Gk
−1 , τ = RKC

  
V + τ

dV
dt

=V∞,        V∞ = EK + RK Ie

 V∞

26
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Response to current injection

Ie(t) 0
I0

 V∞(t)= EK + RK Ie(t)

 V∞(t)

EK

 EK + RK I0

time  EK =−75mVEK

Vm (t)
 EK + RK I0

time 27



A mathematical model of a neuron
• Equivalent circuit model
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Ion Cytoplasm	
(mM)

Extracellular	
(mM)

Nernst	
(mV)

K+ 400 20 -75

Na+ 50 440 +54

Ion Cytoplasm	
(mM)

Extracellular	
(mM)

Nernst
(mV)

K+ 400 20 -75

Na+ 50 440

The Nernst Potential is different for 
different ions

Intracellular and extracellular concentrations of ionic 
species, and the Nernst potential

ENa = 25mV ln
440
50

⎛

⎝
⎜

⎞

⎠
⎟= 25mV (2.17) = 54.3mV
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Ion Cytoplasm	
(mM)

Extracellular	
(mM)

Nernst	
(mV)

K+ 400 20 -75

Na+ 50 440 +54

Cl- 52 560 -59

Ion Cytoplasm	
(mM)

Extracellular	
(mM)

Nernst
(mV)

K+ 400 20 -75

Na+ 50 440 +54

Cl- 52 560

The Nernst Potential is different for 
different ions

Intracellular and extracellular concentrations of ionic 
species, and the Nernst potential

ECl = −25mV ln
560
52

⎛

⎝
⎜

⎞

⎠
⎟= −25mV (2.38) = −59.4mV

The	negative	here	comes	from	the	negative	charge	of	the	Cl- ion	(q=-e) 30
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The Nernst Potential is different for 
different ions

Ion Cytoplasm	
(mM)

Extracellular	
(mM)

Nernst
(mV)

K+ 400 20 -75

Na+ 50 440 +55

Cl- 52 560 -59

Ca++ 10-4 2 +124

Intracellular and extracellular concentrations of ionic 
species, and the Nernst potential

 
ECa =12.5mV ln 2

.0001
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟=124mV

Why	is	this	12.5mV? 31
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Outline of HH model
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Voltage and time-dependent ion channels are 
the ‘knobs’ that control membrane potential.

• Na+channels push the membrane potential 
toward +50mV.

• K+ channels push the membrane potential 
toward -80mV.

• Together these channels give the neural 
machinery flexible control of voltage!

• - for example to generate an action potential
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Outline of HH model
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Voltage and time-dependent ion channels are 
the ‘knobs’ that control membrane potential.

• Na+ conductance pushes the membrane 
potential toward +55mV.

• K+ conductance pushes the membrane 
potential toward -75mV.

• Together these conductances (and 
batteries) give the neuron flexible control 
of voltage!

• - for example to generate an action potential
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We are going to replace the fancy spike generating mechanism in a 
real neuron with a simplified ‘spike generator’.

35

Integrate and Fire model of a neuron

GL

EL Ie

VmC

+

Spike
generator

Louis Lapique, 1907
Knight, 1972



A simplified model of a neuron

• All spikes are the same. (No information carried in the details of action 
potential waveforms.)

• While APs (spikes) are important, they are not what neurons spend most of 
their time doing. Spikes are very fast (~1ms in duration). 

• This is much shorter than the typical interval between spikes (~100ms). Most 
of the time, a neuron is ‘integrating’ its inputs. (Separation of timescales)

spikes as δ − functions

250 ms

• Spikes tend to occur when the voltage in a neuron reaches a particular 
membrane potential, called the spike threshold. 36



Integrate and Fire model of a neuron

GL

EL Ie

VmC

+

Spike
generator

The spike generator is very 
simple. When the voltage 
reaches the threshold Vth, it 
resets the neuron to a hyper-
polarized voltage  Vres.

Louis Lapique, 1907

Vth

Vres

Vm(t)

time

37

Removed due to copyright restrictions: Figure 2D1: Subthreshold 
membrane potential oscillations in RA neuron. Mooney, R. "Synaptic 
basis for developmental plasticity in a birdsong nucleus." Journal of 
Neuroscience 1 July 1992, 12 (7) 2464-2477.



 
f .r.= 1

Δt

Ie

V
C

GL

EL

+

Spike
generator

 Δt

 
C dV
dt

= Ie

• Let’s calculate the firing rate of our neuron

We’ll first consider the case 
where there is no leak.

 
f =

1
Δt

=
1

CΔV
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟Ie

Vth

Vres

 ΔV

Ie

 
CΔV
Δt

= Ie

 ΔV =Vth−Vres

 

dV
dt

=
ΔV
Δt
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Integrate and Fire model of a neuron



Ie

V
C

Spike
generator

• Let’s calculate the firing rate of our neuron

We’ll first consider the case 
where there is no leak.

 
f =

1
CΔV
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟Ie

f

Ie

 

1
CΔVVth

Vres

 ΔV

Ie 39

Integrate and Fire model of a neuron
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GL

EL
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Spike
generator

 Δt

 
f .r.= 1

Δt

Now we’ll put our leak 
conductance back in.

Think of this GL like a small 
potassium conductance that is 
constantly on. It has no voltage 
dependence and no time 
dependence. EL = -75mV. 

V∞

EL

Ie

Vth

Vres

 ΔV

What happens when

 V∞ <Vth ? 40

Integrate and Fire model of a neuron

V
∞
= EL + RL Ie



Lets calculate the injected current 
required to reach threshold (rheobase).

  τ = RLC

Integrate and fire with leak

Vth

Vres

 Δt

V∞

What happens just at threshold?

The time to reach threshold (      ) is:
• very long
• very sensitive to injected current

 Δt

 V∞ =Vth

 EL + RL Ie =Vth

 Ie =GL (Vth−EL )

Ie

f.r.

0

Ith
41

 Ith =



  τ = RLC

  V (t)−V∞ = (V0−V∞)e
−t /τ

  Vth−V∞ = (Vres−V∞)e
−Δt /τ

Integrate and fire with leak

  
e−Δt /τ =

V∞−Vth
V∞−VresVth

Vres

 Δt

V∞

  
f =Δt−1 = τ ln V∞−Vres

V∞−Vth

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

  
Δt =−τ ln V∞−Vth

V∞−Vres

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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  V∞Vth ,Vres

At high input currents, the solution 
has a simple approximation

Integrate and fire

  
f = τ ln V∞−Vres

V∞−Vth

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

 Ith =GL Vth−EL( )
 
f =

1
CΔV

Ie− Ith( )

   ln(1+α)∼α
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Integrate and fire
This equation is linear in injected current Ie , just like the case of no leak!

Ie

f.r.

0
Ith

 

1
CΔV

44

 
f =

1
CΔV

Ie− Ith( )

The F-I curve of many neurons look approximately like this!

Luo et al 2017

Figure	courtesy	of	Luo,	et	al.	License:	CC	BY.	Source:	"Comparison	of	the	Upper	Marginal	Neurons	of	Cortical	
Layer	2	with	Layer	2/3	Pyramidal	Neurons	in	Mouse	Temporal	Cortex."	Front.	Neuroanat.,	21	December	2017.
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We have replaced the fancy spike generating mechanism in a real 
neuron with a simplified ‘spike generator’.
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Integrate and Fire model of a neuron

GL
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Spike
generator

Louis Lapique, 1907
Knight, 1972
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