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A mathematical model of a neuron

* Equivalent circuit model
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Learning objectives for Lecture 2

To understand how neurons respond to injected currents

To understand how membrane capacitance and resistance allows
neurons to integrate or smooth their inputs over time (RC model)

To understand how to derive the differential equations for the RC
model

To be able to sketch the response of an RC neuron to different
current inputs

To understand where the ‘batteries’ of a neuron come from



Why understand how neurons respond to
injected current?
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* First, because nearly every aspect of computation and
signaling in a neuron is controlled by voltage. This control is
almost entirely mediated by the voltage sensitivity of ion

channels.

* In the brain, neurons have current injected into them:
» Through synapses from other neurons
» Or as a result of sensory stimuli



Why understand how neurons respond to
injected current?
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Neurons can perform analog numerical 0
integration over time time

t
Voltage(t) = _[Current(t) dt
0

time



A neuron 1s a capacitor
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Why is this a capacitor?

A capacitor is two conductors
separated by an insulator

O v
() Ors s
Oy —
O D)
k237
Phospholipid bilayer: A= 107
—polar head
—non-polar tail

Saline

m

Image of a parallel plate
capacitor is in the public
domain. Source: Wikimedia.

Equivalent circuit

intracellular

— <T> Vm - Vin_vout
C | @)

extracellular

What happens when we inject
current into our neuron?


https://en.wikipedia.org/wiki/Capacitor#/media/File:Parallel_plate_capacitor.svg

A neuron 1s a capacitor

intracellular

Charge imbalance: AQ

i= ( l —

+ - | +
Icl L. Voltage difference: AV

extracellular

As positive charges build up onthe N
inside of the membrane, they repel AQ =C-AV

positive charges away from the

outside of the membrane... Q: charge (Coulombs, C = 6 x 10'8 charges)

C: capacitance (Farads, F)
V: voltage difference across capacitor (Volts, V)

This looks like a current flowing
through the capacitor! < 4




A neuron 1s a capacitor

intracellular

(L AQ =C-AV
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C <1 Definition of capacitive current
IeT

Loy = %L - 4

extracellular [ dt

But, Kirchoff's current law tells us that the sum of all
currents into a node is zero

-1 +1,=0

Thus, we can write the differential equation that describes the change
in voltage of our neural capacitor with injected current

A% I, has units of Amperes, which is
di Coulombs per second

L()=C



capacitor
Response of a reuren to 1njected current

dV
[(t)=C—=
(H=C—

We can integrate this differential equation over time, starting with
initial voltage V, at time zero.

4 4
V.()=V, +% J.Ie(r)dr Jle(T)dT = AQ
. :
Y

Think about the integral as adding up all the current from time O to
time t

Thus, the total change in voltage is just given by

1
AV =—A
C 0,



Some examples
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A neuron 1s a leaky capacitor

oF ievs and channels,
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Our equation for our model becomes:

intracellular

[, +1 =1 ILl Icl CL

Ry — Cf Vi
I, + Cd—v I c 1 T

_ e

dt

|

membrane capacitive current

A

T extracellular

electrode current

membrane ionic current

N——

outward current inward current
'+' leaving the cell = positive '+’ entering the cell = negative



Simple case: a leak

We are going to begin by considering the simplest case of a membrane
current — a simple leak (like a hole in the membrane)

In this case, the current through the ion channel can be modeled using
Ohm'’s Law

v
[, =—
R,
Plugging this into our equation above, we get ]L + ]C — ]e
V. dv,
[e
R, dt
Multiplying by R, we get:
dV
V. + RC—= =R

dt



Vo o+ RLC% =R L
dt

What is the steady-state solution to this equation?

Set dV /dt = 0

We find that:
V = V_=RI,

Thus, we can rewrite our equation as follows

v, + 1l =y,
dt

where T=RC



An aside about first-order linear differential equations
We can rewrite our equation in the following form:

We see that the derivative is
* negative if V>V,
av — —l(V—Voo) »  positive if V <V,
dt T av 4

dt
Thus, the voltage always approaches the \
value V.,

And it approaches at a rate proportional
to how far V is from V.,

MY

V(1)

smaller T
What kind of function is this?
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Thus, under the condition that I, is constant (and thus V) is constant:

V)=V, =, =V.)e"™"

While this solution applies only in the case of constant V,, it can be
very useful



Response to current injection

Let’s see what happens when we inject current into our
model neuron with a leak conductance.
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Voo(t) — RL Ie(t)

time N 17



An RC neuron acts like a filter

Responding well to inputs slower than 7, but not to inputs faster thant
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The first-order linear differential equation is fundamental to
understanding many processes in physics, chemistry, biology and
neural computation

V)=V, +(V,=V.)e"

Even more complex systems involve differential equations that are not
(much) more difficult to understand and solve.



Origin of 10 millisecond time scale

R=10°Q=100 MQ
C=10"F

T=RC ~10ms



A closer look at membrane resistance

We have described the relation between voltage and current using
Ohms Law (V=IR))

_ p-l
I, =RV
We can rewrite Ohm’s Law in terms of a quantity called G — R
‘conductance.’ Bt
I, =G,V

R, has units of Ohms (Q)
G, has units of Ohms-! or Siemens (S)



Conductances 1n parallel add

.:,b"of /‘V: : o g ? a—al' I, =GV+G,V
T I, =(G +G,)V
T I G, =G, +G,
Twice the area, twice the holes,

twice the conductance, twice the
current at a given voltage

IL — GLVm
— A gLVm

)
T Specific leak conductance (mS/mm?)

Membrane area (mm?)



A closer look at membrane capacitance

N ICtot:IC1+IC2
Te, R v dv
I;CI ICtot - Cl —+ Cz .
\L J v dt dt
P dVv
c
= 2 Iy =(Ci+Cy)— C =C +C,

Capacitances in parallel add!

Thus, the capacitance of a cell depends linearly on surface area

C=cA A=d4nr’

I membrane area

specific capacitance (10 nF/mm?)



Membrane time constant

Neuron time constant:

T = RLC
G, g4 g

Thus, the time constant of a neuron is a property of the
membrane, not dependent on cell geometry (size, shape, etcl!).



Let’s add a battery to our neuron!

intracellular intracellula
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Outline of HH model

Voltage and time-dependent ion channels are
the 'knobs’ that control membrane potential.
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Some ion channels push the membrane
potential positive.

Other ion channels push the membrane
potential negative.

Together these channels give the neural
machinery flexible control of voltage!



Where do the batteries of a neuron come from?

1) lon concentration gradients

2) lon-selective permeability of ion
channels

' O ¢ 4
e A



Neurons have batteries

'Non-selective’ pore
[K] passes all ions

[Klo—

[Kloo=[K]p/2 frmmmmmmmmm e o= -->

[K]out

Time

(a long time)



Neurons have batteries

'lon-selective’ pore
[K] passes only K* ions

[Klo=

Why does the concentration
stop changing here?

: —>
Time
e (V) 0 (a short time)
Why do the ions stop flowing
from side 1 to side 27?
Time
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Neurons have batteries

'lon-selective’ pore

I () .
e passes only K* ions .
time
AV=V1‘V2
1 time
0 >

The voltage difference changes in a
direction that opposes the flow of ions.

This voltage difference is a
battery for our model neuron!!

It reaches an ‘equilibrium potential’ at a
value that gives zero net flow of ionic
current.

30



Neurons have batteries

2 | |
K* K+
K+ Kt s
K+
S |
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There will be some electric field strength such that the
'drift’ will exactly balance the diffusion produced by the

concentration gradient...

Nernst Potential -



Neurons have batteries

Where do the 'batteries’ of a
neuron come from?

1) lon concentration gradients

2) lon-selective pores (channels)

How big is the battery (how
many volts?)

This is determined by a balance
between diffusion down a concentration
gradient balanced by ‘drift’ in the
opposing electric field.



Electrodiffusion and the Nernst Potential

One can use Ohm's law and Fick’s first law to derive the Nernst
potential

— At this voltage, the drift current in the electric field exactly
balances current due to diffusion

I Tot — I Drift —I_ I Diffusion — O
Ohm's Law Fick's First Law
_ Ag'p(x)D AV I :_AqDﬁ_go
Drift kT L Diffusion ax

AV:k—Tln

q

Pour
gpin

at equilibrium




Derive Nernst potential using the
Boltzmann equation

The Boltzmann equation describes the ratio of probabilities of a
particle being in any two states, at thermal equilibrium:

U-U
P._ . B e—(%) k =Boltzmann constant (J/K)
P
state? T =temperature (K) =273 + T,
Energy kT =thermal energy (J)
A
U state 1
v state 2
kT =0
Pstatel — O




Derive Nernst potential using the
Boltzmann equation

The Boltzmann equation describes the ratio of probabilities of a
particle being in any two states, at thermal equilibrium:

U,-U.
L _ e_( o ZJ k =Boltzmann constant (J/K)
thateZ _
T =temperature (K)
Energy kT =thermal energy (J)
A
U Q@
state 1 ® e
U 0%0 o % JAT
state 2
kT > 0
})statel > 0

state?



Derive Nernst potential using the
Boltzmann equation

The Boltzmann equation describes the ratio of probabilities of a
particle being in any two states, at thermal equilibrium:

U,-U,
Pstatel _( kT j
=e

thateZ
Energy Energy Energy
A A A
U e e
state 1 . ® ol ® . ° .
(@) %0 state 1 (0) %0 U OO ® o ®
U, _0%0¢ o T ) _0%0¢ © YT oE T .9 @ 9 0 YT
state 2 state 2 2 state 2
AU >> kT AU =2kT AU < kT
P P P
statel statel -2 statel
=( =e ~1.0
P P P

state? state?
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Nernst Potential

We can compute the equilibrium potential using the Boltzmann
equation:

P _Zin"" our 9V =Vour) U = qV = electrical potential (J)
in kT kT
e e

- g = charge of ion

q= 1.6x10""°C for monovalent ion

37



Nernst Potential

We can compute the equilibrium potential using the Boltzmann

equation:
P _ Uin _Uout 9 (Vm _Vout )

out

in

AV =V, —V._ =25mV h{%)

K
AV = 25mVIn(w] = kg

K],

U = qV = electrical potential (J)
g = charge of ion

q= 1.6x10""°C for monovalent ion

— = 25mV for monovalent ion
q

Don’t get confused by this notation. Ey is the

equilibrium potential (voltage) for the K ion.

'E’ here does not refer to an electric field.



The Nernst potential for potassium

Intracellular and extracellular concentrations of ionic
species, and the Nernst potential

Cytoplasm Extracellular Nernst
(mM) (mM) (mV)
K* 400 20 -75

E, = —1n — =25mV at 300K (room temp)
400

q q for monovalent ion

kT [20] kT

E, =25mV(=3.00)=—-75mV

39



How to implement an 1on specific conductance
as a battery 1in our model neuron
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Learning objectives for Lecture 2

To understand how membrane capacitance and
resistance allows neurons to integrate or smooth their
inputs over time (RC model)

To understand how to derive the differential equations
for the RC model

To be able to sketch the response of an RC neuron to
different current inputs

To understand where the '‘batteries’ of a neuron come
from.



Extra notes on how to derive the Nernst potential
using the equations for electrodiffusion



Electrodiffusion and the Nernst Potential

In the last lecture, we found that the relation between drift velocity
and force for an ion in an electric field is:

where J = k% is just the coefficient of friction given by the Einstein-
Smoluchovski relation.

k =Boltzmann constant (J/K)

F = gE = electric force on ion due to T =temperature (K)
qd =total ion charge in Coulombs D =diffusion constant (m2/s)
E = electric field (V/m)



Electrodiffusion and the Nernst Potential

Thus, we can write the drift velocity as:

qD qD is the ion mobility, which describes
d how fast an ion will move in an
kT kT electric field - (m/s)/(V/m)

We can find the total current density (amperes per unit area) as

I N,c = ion density (ions/m?3)
— = qNAC v, ¢ = molarion concentration (mol/m3)
A N, = Avagadro’s number (ions/mol)

Substituting v4 from above, we get that:

2
L_gND
A kT




Electrodiffusion and the Nernst Potential

Next we use the fact the the electric field is the spatial derivative of
the electrical potential (voltage)

F——vy, g=2
Ox

We can find the total current density (amperes per unit area) due to
the electric field:

I_ 4N, oV
kT Ox



Electrodiffusion and the Nernst Potential

Put it all together and we get

This has units of current per unit area
(Amperes/m?)

Il

A

g OV Oc
C -+
k' Ox Ox

= —gN ,D

Tot

We know that at equilibrium, the total current is zero. Thus,

qd = charge of a single ion
g 0OV Oc ¢ =molar concentration (mol/m3)
kT ¢ Ox Ox =0 N, = Avagadro’s number

A good reference for this derivation is Hille's chapter on ‘Elementary
Properties of lons in Solution” (p. 261-269 of the second edition)



Electrodiffusion and the Nernst Potential

Divide through by c and g/kT and we get

10c

— 0
c 0x

8_V+ kT
0x q

Use the fact that 2nc) _ 1 Jex)
Ox c(x) Ox

0

oV n kT |Olnc(x)
0x q 0x



Electrodiffusion and the Nernst Potential

Now we can integrate both terms

V() [y =0

I~ +[k—T] Inc(x)
=0 | g

‘/out o ‘/m — _[k_T] [ln COW o ln Ci"]
q
AV = k—Tln o ]’ where AV = Vm o Vout
q Cip at equilibrium

Don't get confused by this notation. E is the
equilibrium potential (voltage) for the K ion.
'E’ here does not refer to an electric field.
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