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Today’s Topics 

1. The basics of a design optimization problem 
2. Unconstrained optimization algorithms 
3. Computing gradients 
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Design Variables 
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Design vector x contains n variables that form the design space 

During design space exploration or optimization we change the 
entries of x in some rational fashion to achieve a desired effect 

can be ….. 

Real: 

Integer: 

Binary: 

Boolean: 

3
Design variables are “controlled” by the designers  



Objectives 
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The objective can be a vector J of z system responses 
or characteristics we are trying to maximize or minimize 

Often the objective is a 
scalar function, but for 
real systems often we 
attempt multi-objective
optimization: 

Some objectives can be 
conflicting. 
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Parameters 

Parameters p are quantities that affect the objective J,
but are not degrees of freedom in the optimization search. 

Quantifying the sensitivity of optimization results to 
parameters gives insight about assumptions and problem 
specifications. 

Sometimes parameters p can be turned into design  
variables xi to enlarge the design space. 

Sometimes parameters p are former design variables that 
were fixed at some value because they were found not to 
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affect any of the objectives Ji or because their optimal level 
was predetermined. 



Constraints 
Constraints act as boundaries of the design space x
and typically occur due to finiteness of resources or 
technological limitations of some design variables. 

Often, but not always, optimal designs lie at the 
intersection of several active constraints 

Inequality constraints: 

Equality constraints: 

Bounds: 
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Objectives are what we are trying to achieve 
Constraints are what we cannot violate 
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Design Optimization Problem Statement 
The design problem may be formulated as a problem of  

min J x p, 

s.t.   g(x,p)  0   
        h(x,p)=0
xi , ,LB  x xi  i UB (i n 1, ..., )

Nonlinear Programming (NLP) 
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Iterative Optimization Procedures 

Many optimization algorithms are iterative: 

where 
q=iteration number 
S=vector search direction 
a=scalar distance 
and the initial solution x0 is given 

1q q q qa x x S

The algorithm determines the search direction S 
according to some criteria. 

Gradient-based algorithms use gradient information to 
decide where to move. Gradient-free algorithms use 

8sampling and/or heuristics. 



Iterative Optimization Procedures 

Matlab demo 
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Gradient Vector 
Consider a function J(x), x=[x1,x2,...,xn]T

The gradient of J(x) at a point x0 is a vector of length n:
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Each element in the vector is evaluated at the point x0.
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Hessian Matrix 
Consider a function J(x), x=[x1,x2,...,xn] T

The second derivative of J(x) at a point x0 is a 
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Each element in the matrix is evaluated at the point x0.
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Taylor Series 
Consider scalar case: 

df( 0 d2
0 1 ff z) f z( ) ( )z z 0 2    2 ( )z  z

dz z0 2 dz z0

When function depends on a vector: 

J J(x) ( )x0   
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T0 0(x x )

1( )0 0T 0 x x H(x )( )x x 
2
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1n nn n1

The gradient vector and Hessian matrix can be approximated using finite 
differences if they are not available analytically or using adjoints. 
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Types of Optimization Algorithms 

•  Useful resource: Prof. Steven Johnson’s open-source  
library for nonlinear optimization 
http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms 

•  Global optimization 
Most methods 
have some 

•  Local derivative-free optimization convergence 
analysis and/or 

•  Local gradient-based optimization proofs. 

•  Heuristic methods 
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Local DerivativeLocal Derivative-Local Derivative-Free Optimization: Local Derivative
Nelder

Local Derivative
NelderNelder-

Local Derivative Free Optimization: Free Optimization: Free Optimization: Local DerivativeLocal DerivativeLocal DerivativeLocal Derivative
NelderNelder--

• A simplex is a special polytope of N + 1 vertices in N
dimensions 

– e.g., line segment on a line, triangle in 2D, tetrahedron in 3D 

• Form an initial simplex around the initial guess x0

•  Repeat the following general steps: 
–  Compute the function value at each vertex of the simplex 
–  Order the vertices according to function value, and 

discard the worst one 
–  Generate a new point by “reflection” 
–  If the new point is acceptable, generate a new 

simplex. Expand or contract simplex size 
according to quality of new point. 

•  Converges to a local optimum when 
the objective function varies 
smoothly and is unimodal, but 
can converge to a non-stationary 
point in some cases Figures from 

http://www.scholarpedia.org/article/Nelder-
• “fminsearch” in Matlab Mead_algorithm 

Mead Simplex

http://www.scholarpedia.org/article/Nelder-Mead_algorithm
http://www.scholarpedia.org/article/Nelder-Mead_algorithm


Global DerivativeGlobal Derivative-Global Derivative-Global DerivativeGlobal DerivativeGlobal Derivative
DIRECT

•  DIRECT: DIviding RECTangles algorithm for global optimization 
(Jones et al., 1993) 

•  Initialize by dividing domain into hyper-rectangles 

•  Repeat 
–  Identify potentially optimal 

hyper-rectangles 
–  Divide potentially optimal 

hyper-rectangles 
–  Sample at centers of new 

hyper-rectangles 

•  Balances local and global search 
–  Global convergence to the 

optimum 
–  May take a large, exhaustive 

search Figures from “DIRECT Optimization Algorithm 
User Guide,” D.E. Finkel, 2003. 

Free Optimization: 



Gradient-GradientGradient

x0, q=0 

Calculate J(xq)

Calculate Sq 

q=q+1 

Perform 1-D search 
xq = xq-1 + a Sq 

no yesConverged? Done 
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Unconstrained Problems: Unconstrained Problems: 
Gradien

Unconstrained Problems: 
GradientGradient

Unconstrained Problems: Unconstrained Problems: Unconstrained Problems: 
GradientGradient-Based Optimization Methods

•  First-Order Methods 
–  use gradient information to calculate S
–  steepest descent method 
–  conjugate gradient method 
–  quasi-Newton methods 

•  Second-Order Methods 
–  use gradients and Hessian to calculate S
–  Newton method 

•  Often, a constrained problem can be cast as an unconstrained 
problems and these techniques used. 
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Steepest Descent 

Sq = -J(xq-1) -J(x) is the direction of 
max decrease of J at x

Algorithm: 
choose x0, set x=x0 

repeat until converged: 
S = -J(x) 
choose a to minimize J(x+aS) 
x = x + aS 

• doesn’t use any  information from previous iterations 
• converges slowly 
 a is chosen with a 1-D search (interpolation or Golden section) 
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Conjugate Gradient 

S1 = -J(x0)
Sq = -J(xq-1) + bqSq-1

 

q
( )

2
J xq 1

b 
( )

2
J q2 x

•  search directions are now conjugate 
• directions Sj and Sk are conjugate if SjT H Sk = 0 

(also called H-orthogonal) 
•  makes use of information from previous iterations 

without having to store a matrix 

19



Geometric Interpretation 

Steepest descent Conjugate gradient 

Figures from “Optimal Design in Multidisciplinary Systems,” AIAA 
Professional Development Short Course Notes, September 2002. 
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