Important Concepts in Thin Airfoil Theory

1. This airfoil theory can be viewed as a panel method with vortex solutions taking the limits of infinite number of panels & zero thickness & zero camber

$$\lim_{\substack{\text{thickness} \to 0 \\ \text{camber} \to 0}} \underbrace{\left\{ \lim_{N \to \infty} \text{vortex panel} \right\}}_{\frac{1}{2\pi} \sum_{i=1}^{N} \gamma_{i} K_{ij} = \bar{V}_{\infty} \bullet \bar{n}_{i}} = \underbrace{\text{thin airfoil theory}}_{\frac{1}{2\pi} \int_{0}^{c} \frac{\gamma(\xi) d\xi}{x - \xi} = V_{\infty} \left(\alpha - \frac{dz}{dx}\right)}$$

2.
$$C_i = 2\pi(\alpha - \alpha_{IQ})$$

$$\alpha_{LO} = \frac{1}{\pi} \int_{0}^{\pi} \frac{dz}{dx} (1 - \cos \theta_{o}) d\theta_{o}$$

$$x = \frac{c}{2}(1 - \cos\theta_o)$$

- $\alpha_{LC} = 0$ for $\frac{dz}{dx} = 0$ {i.e. symmetric airfoils}
- thickness does not affect C_l to 1st order
- 3. Moment at $\frac{c}{4}$ is constant with respect to α according to thin airfoil theory

$$\Rightarrow \frac{c}{4}$$
 = aerodynamic center

- $M_{\frac{c}{4}}$ only depends on camber!
- $M_{\frac{c}{4}} = 0$ for symmetric airfoil
- 4. Thin airfoil theory assumes:
 - 2-dimensions
 - Inviscid*
 - Incompressible*
 - Irrotational*
 - Small α
 - Small $\tau_{\rm max}/c$
 - Small $z_{\rm max}/c$

$$* \Rightarrow D' = 0$$