## **Kutta Condition**

Thought Experiment<sup>1</sup>

Suppose we model the flow around an airfoil using a potential flow approach.



| We know the following:        |                             |
|-------------------------------|-----------------------------|
| $L' = \rho V_{\infty} \Gamma$ | $\vec{u} = \nabla \phi$     |
| D'=0                          | $\vec{\omega} = 0$          |
|                               | $\vec{u} \cdot \vec{n} = 0$ |
| Bernoulli applies             |                             |

Question: How many potential flow solutions are possible?

Answer: Infinitely many!

For example:



Both of these flows have circulation which are not all equal

$$\Gamma_1 \neq \Gamma_2 \Longrightarrow L_1' \neq L_2'$$

<sup>&</sup>lt;sup>1</sup> Anderson, Sec. 4.5

## Another difference can be observed at the trailing edge:



As a result of this and the physical evidence, Kutta hypothesized:

In a physical flow (i.e. having viscous effects), the flow will smoothly leave a sharp trailing edge. -Kutta Condition

⇒ Flow #1 is physically correct!

Let's look at Flow #1 a little more closely:

Finite angle T.E.  $(\alpha_{te} > 0)$ 



Upper and lower surface velocities must still be tangent to their respective surfaces.

This implies 2 different velocities at TE.

16.100 2002 2

Only realistic option:

$$V_{lower} = V_{upper} = 0$$
 for finite angle T.E.

Note: from Bernoulli, this implies

$$p_{t.e.} = p_{\infty} + \frac{1}{2} \rho V_{\infty}^2 - \frac{1}{2} \rho \underbrace{V_{t.e.}^2}_{=0}$$

$$p_{t.e.} = p_{\infty} + \frac{1}{2} \rho V_{\infty}^2$$

$$\Rightarrow TE \text{ is a stagnation point with } p_{t.e.} \equiv \text{ total pressure}$$

<u>Cusped TE</u>  $(\alpha_{te} = 0)$ 



In this case, velocities from upper and lower surface are aligned.

In order for the pressure at the TE to be unique:

$$V_{upper} = V_{lower}$$

16.100 2002